• Title/Summary/Keyword: SFCOMPO

Search Result 2, Processing Time 0.017 seconds

Integral nuclear data validation using experimental spent nuclear fuel compositions

  • Gauld, Ian C.;Williams, Mark L.;Michel-Sendis, Franco;Martinez, Jesus S.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1226-1233
    • /
    • 2017
  • Measurements of the isotopic contents of spent nuclear fuel provide experimental data that are a prerequisite for validating computer codes and nuclear data for many spent fuel applications. Under the auspices of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) and guidance of the Expert Group on Assay Data of Spent Nuclear Fuel of the NEA Working Party on Nuclear Criticality Safety, a new database of expanded spent fuel isotopic compositions has been compiled. The database, Spent Fuel Compositions (SFCOMPO) 2.0, includes measured data for more than 750 fuel samples acquired from 44 different reactors and representing eight different reactor technologies. Measurements for more than 90 isotopes are included. This new database provides data essential for establishing the reliability of code systems for inventory predictions, but it also has broader potential application to nuclear data evaluation. The database, together with adjoint based sensitivity and uncertainty tools for transmutation systems developed to quantify the importance of nuclear data on nuclide concentrations, are described.

On using computational versus data-driven methods for uncertainty propagation of isotopic uncertainties

  • Radaideh, Majdi I.;Price, Dean;Kozlowski, Tomasz
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1148-1155
    • /
    • 2020
  • This work presents two different methods for quantifying and propagating the uncertainty associated with fuel composition at end of life for cask criticality calculations. The first approach, the computational approach uses parametric uncertainty including those associated with nuclear data, fuel geometry, material composition, and plant operation to perform forward depletion on Monte-Carlo sampled inputs. These uncertainties are based on experimental and prior experience in criticality safety. The second approach, the data-driven approach relies on using radiochemcial assay data to derive code bias information. The code bias data is used to perturb the isotopic inventory in the data-driven approach. For both approaches, the uncertainty in keff for the cask is propagated by performing forward criticality calculations on sampled inputs using the distributions obtained from each approach. It is found that the data driven approach yielded a higher uncertainty than the computational approach by about 500 pcm. An exploration is also done to see if considering correlation between isotopes at end of life affects keff uncertainty, and the results demonstrate an effect of about 100 pcm.