• Title/Summary/Keyword: SEXUAL MATURITY

Search Result 229, Processing Time 0.024 seconds

A Study on Relations between Skeletal Maturity and Heart Rate Variability (골성숙도와 심박 변이도의 상관성에 대한 연구)

  • Lee, Hye-Lim;Han, Jae-Kyung;Kim, Yun-Hee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.1-11
    • /
    • 2012
  • Objectives The purpose of this study is to examine the relationship between skeletal maturity and heart rate variability (HRV) based on the bone age and HRV parameters. Methods 103 children from 6 years to 17 years of age, who do not have any disease-related symptom, and visited ${\bigcirc}{\bigcirc}$ oriental medicine hospital, are measured based on their bone age and short-term spectral analysis of HRV. Results 1. Skeletal maturity was significantly correlated with HRV indices: mean HRT and SDNN. As the skeletal maturity increases, the mean HRT was decreased and the SDNN was increased. 2. When classifying according to the skeletal maturity score, the mean HRT was higher in the 'below -0.4' group compare to '-0.3~0.7' group and '0.8~1.9' group. SDNN was higher in the '0.8~1.9' group compare to '-0.3~0.7' group, 'below -0.4' group 3. When classifying according to the sex, age and secondary sexual characteristics, as the skeletal maturity was increased, the mean HRT was significantly decreased and the SDNN was significantly increased only in the boys who did not develop secondary sexual characteristics. Conclusions Skeletal maturity could be statistically significant with HRV indices, especially to the boys and the children than the girls and the teenagers.

Maturity and Spawning of the Greenling, Hexagrammos otakii in Coastal Waters near Incheon, Korea (인천 연안에 서식하는 쥐노래미(Hexagrammos otakii)의 성숙과 산란)

  • Seung Hwan Lee;Tae Hyoung Roh;Dea Hyeon Kwon;Dong Hyuk Choi
    • Korean Journal of Ichthyology
    • /
    • v.35 no.4
    • /
    • pp.333-339
    • /
    • 2023
  • The aim of this study was to collect information regarding the sex ratio, size at sexual maturity, and the primary spawning period of Hexagrammos otakii. The sex ratio (female : male) was observed to be 1 : 1.2 (n =739 : 906, with females comprising 81.6% of the population). The gonadosomatic index (GSI) exhibited its highest values in November for females and October for males, coinciding with the primary spawning period from November to January. The total length required for 50% sexual maturity was determined through a logistic regression model and found to be 23.1 cm for females.

Spermatogenesis and Sexual Maturation in Male Mactra chinensis (Bivalvia: Mactridae) of Korea

  • Chung, Ee-Yung;Kim, Eun-Jong;Park, Gab-Man
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.227-234
    • /
    • 2007
  • Spermatogenesis, the reproductive cycle, and the size at first sexual maturity in male Mactra chinensis were investigated by cytological and histological observations. The spermatozoon exhibits a primitive type morphology and is similar to those of other bivalves in that it contains a short midpiece with four mitochondria surrounding the centrioles. The morphologies of the sperm nucleus type and the acrosome shape of this species are cylindrical and modified cap-like, respectively. The spermatozoon is approximately $40-45\;{\mu}m$ in length including the sperm nucleus (about $1.46\;{\mu}m$), acrosome (about $1.20\;{\mu}m$) and tail flagellum. The axoneme of the sperm tail flagellum consists of nine pairs of microtubules at the periphery and a pair at the center. The axoneme of the sperm tail shows a 9+2 structure. The spawning period of this species lasts from June to September, and the main spawning occurs in July and August, when the seawater temperature is greater than $20^{\circ}C$. The percentage of individual male clams at first sexual maturity was 56.5% for those whose shell lengths were 35.1-40.0 mm, and 100% for over 45.1 mm. Accordingly, harvesting clams <35.1 mm in shell length could potentially cause a drastic reduction in recruitment, and a measure indicating a prohibitory fishing size should be taken for adequate fisheries management.

Sexual Maturity and Early Life History of the Mudskipper Scartelaos gigas (Pisces, Gobiidae): Implications for Conservation

  • Kim, Jin-Koo;Baek, Hea-Ja;Kim, Jae-Won;Chang, Dae-Soo;Kim, Joo-Il
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.403-410
    • /
    • 2011
  • Scartelaos gigas is an amphibious mudskipper species that inhabits mud flats in Korea, China, and Taiwan. This fish is at risk of extinction because of its very restricted habitat and overexploitation. Information about this fish's reproductive characteristics is needed for species conservation. The sexual maturity and early life history of S. gigas were investigated through histological methods and direct observation of eggs in the wild, respectively. In total, 560 individuals of S. gigas were collected with the aid of fishermen from March 2003 to October 2003 at Jung-do Island, southwest Korea. Through microscopic observations of gonadal development, it was determined that S. gigas of both sexes were immature in April, but began to reach maturity in May, and were then fully mature by June, which was maintained until July. In August, some female fish developed early oocytes, but by September oocytes were observed to have degenerated and had been absorbed. Spawned eggs were elliptical and had an average size of 1.37 mm (long axis) by 0.69 mm (short axis). The newly hatched larvae (3.03 mm total length, TL) had an open mouth and anus, two melanophores near the anus, and one large melanophore between the 18th and 19th myomeres. The larvae (3.18 mm TL) showed absorption of the yolk and oil globule within 5 days after hatching and became prelarvae. This species should be considered vulnerable or conservation-dependent, and thus parental fish need to be protected from fishermen during the main spawning season (June).

Reproductive biology of 58 fish species around La Réunion Island (Western Indian Ocean): first sexual maturity and spawning period

  • Kelig Mahe;Julien Taconet;Blandine Brisset;Claire Gentil;Yoann Aumond;Hugues Evano;Louis Wambergue;Romain Elleboode;Tevamie Rungassamie;David Roos
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • Background: The biological information of fish, which include reproduction, is the prerequisite and the basis for the assessment of fisheries. Methods: The aim of this work was to know the reproductive biology with the first sexual maturity (TL50) and the spawning period for 58 mainly fish species in the waters around La Réunion Island (Western Indian Ocean). Twenty families belonging to the Actinopterygii were represented (acanthuridae, berycidae, bramidae, carangidae, cirrhitidae, gempylidae, holocentridae, kyphosidae, labridae, lethrinidae, lutjanidae, malacanthidae, monacanthidae, mullidae, polymixiidae, pomacentridae, scaridae, scorpaenidae, serranidae, sparidae; 56 species; n = 9,751) and two families belonging to the Elasmobranchii (squalidae, centrophoridae; 2 species; n = 781) were sampled. Between 2014 and 2022, 10,532 individuals were sampled covering the maximum months number to follow the reproduction periods of these species. Results: TL50 for the males and the females, respectively, ranged from 103.9 cm (Acanthurus triostegus) to 1,119.3 cm (Thyrsitoides marleyi) and from 111.7 cm (A. triostegus) to 613.1 cm (Centrophorus moluccensis). The reproduction period could be very different between the species from the very tight peak to a large peak covered all months. Conclusions: Most species breed between October and March but it was not the trend for all species around La Réunion Island.

Changes of Hypothalamic GnRH-I, POMC and NPY mRNA Expression and Serum IGF-I and Leptin Concentrations during Maturation of Shaoxing Ducks (Anas platyrhynchos)

  • Ni, Y.;Lu, L.;Chen, J.;Zhao, Ruqian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.9
    • /
    • pp.1211-1216
    • /
    • 2011
  • Sexual maturity in poultry is controlled by a complex neural circuit located in the basal forebrain, which integrates the central and peripheral signals to activate hypothalamic gonadotrophin-releasing hormone (GnRH) secretion. This study demonstrated the changes of GnRH-I, POMC and NPY mRNA transcription in hypothalamus and IGF-I and leptin levels in serum of Shaoxing ducks during puberty. Body weight increased progressively from d30 to d120 and at d120 the flock reached 5% of laying rate. A significant upregulation of hypothalamic GnRH-I mRNA expression was observed from d60, reaching the peak at d120. POMC and NPY mRNA expression in hypothalamus showed a similar pattern, which increased from d30 to d60, followed by a significant decrease towards sexual maturity. Serum IGF-I levels exhibited two peaks at d30 and d120, respectively. Serum leptin displayed a single peak at d90. The results indicate that the down-regulation of POMC and NPY genes in hypothalamus coincides with the up-regulation of GnRH-I gene to initiate sexual maturation in ducks. In addition, peripheral IGF-I and leptin may relay the peripheral metabolic status to the central system and contribute to the initiation of the reproductive function in ducks.

Sexual Maturation and Artificial Spawning of the Hard Clam, Meretrix Iusoria (Bivalvia: Veneridae) on the West Coast of Korea

  • Chung, Ee-Yung;Kim, Yong-Min;Hur, Young-Baek;Ryu, Dong-Ki
    • The Korean Journal of Malacology
    • /
    • v.21 no.2 s.34
    • /
    • pp.81-93
    • /
    • 2005
  • Reproductive cycle with the gonadal phases, first sexual maturity, artificial spawning amount by the size and spawning interval of the hard clam, Meretrix lusoria were investigated by histological observations and morphometric data by artificial spawning induction. Meretrix lusoria is dioecious and oviparous. The reproductive cycle of this species can be classified into five successive stages: early active stage (January to March), late active stage (February to May), ripe stage (April to August), partially spawned stage (June to September), and spent/inactive stage (September to February). The spawning period was from June to September, and the main spawning occurred between July and August when the seawater temperature exceeds over $20^{\circ}C$. Percentage of first sexual maturity of female and male clams ranging from 40.0 to 45.0 mm in shell length was over 50%, and all clams over 50.0 mm in shell length sexually matured. Female and male clams ranging from 40.0 to 45.0 mm in shell length are considered to be two years old. Therefore, we assume that the hard clams of both sexes begin reproduction from two years of age. The mean number of the spawned eggs increased with the increase of size (shell length) classes. In case of artificial spawning induction, the number of spawned eggs from the clams of a sized class was gradually decreased with the increase of the number of the spawning frequencies (the first, second, and third spawnings). In the experiments of artificial spawning induction during the spawning season, the interval of each spawning was estimated to be 15-18 days (average 17 days).

  • PDF

Ultrastructural Study on Spermatogenesis and Sexual Maturation of the Male Jicon Scallop, Chlamys farreri on the West Coast of Korea

  • Chung, Ee-Yung;Park, Ki-Yeol;Song, Pal-Won
    • The Korean Journal of Malacology
    • /
    • v.21 no.2 s.34
    • /
    • pp.95-105
    • /
    • 2005
  • Gonadosomatic index, reproductive cycle, spermatogenesis and first sexual maturity of Chlamys farreri were investigated by cytological and histological observations, from January 1998 to December 1999. The gonadosomatic index (GSI) rapidly increased in April and reached a maximum in May when seawater temperature rapidly increase. Then the GSI gradually decreased from June to August when spawning occur. Accordingly, monthly changes in the GSI in males coincide with the reproductive cycle. The spermatozoon of Chlamys farreri is the primitive type found in external fertilization species. The head of the spermatozoon is approximately $2.75{\mu}m$ in length including the acrosome measuring about $0.50{\mu}m$ in length, and its tail was approximately $20{\mu}m$, the axoneme of the tail flagellum consists of nine pairs of microtubules at the periphery and a pair at the center. Five spherical mitochondria around the centriole (the satellite body) appear in the middle piece of the sperm. The spawning period was from June to August and the main spawning occurs from July to August when seawater temperatures are greater than $20^{\circ}C$ The reproductive cycle of this species can be categorized into five successive stages; early active stage (January to March), late active stage (March to April), ripe stage (April to August), partially spawned stage (June to August), and spent/inactive stage (August to January). Over 50% of male scallops attained first sexual maturity between 50.0 and 60.0 mm in shell height, and 100% of those over 60.0 mm in shell height achieved maturity. Accordingly, we assume that male individuals begin reproduction at three years of age.

  • PDF

Gametogenic Cycle and the Number of Spawning Seasons by Quantitative Statistical Analysis, and the Size at 50% of Group Sexual Maturity in Atrina (Servatrina) pectinata (Bivalvia: Pinnidae) in Western Korea

  • Chung, Jae Seung;Chung, Ee-Yung;Lee, Chang-Hoon
    • The Korean Journal of Malacology
    • /
    • v.28 no.4
    • /
    • pp.363-375
    • /
    • 2012
  • The gametogenic cycle, the number of spawning seasons per year and first sexual maturiity of the pen shell, Atrina (Servatrina) pectinata, were investigated by quantitative statistical analysis using an Image Analyzer System. Compared two previous results (the spawning periods in the reproductive cycles in 1998 and 2006) by qualitative histological analysis with the present results by quantitative statistical analysis, there are some differences in the spawning periods: the spawning period (June to September) by quantitative statistical analysis was one month longer than those of two previous reports (June to July or June to August) by qualitative histological analysis. However, the number of spawning seasons studied by the qualitative and quatitative analyses occurred once per year. In quantitative statistical analysis using an image analyzer system, the patterns of monthly changes in the percent (%) of the areas occupied by follicles to the ovary area in females (or that of the areas occupied by spermatogenic stages to the testis area in males) showed a maximum in May, and then sharply droped from June to September, 2006. From these data, it is apparent that the spawning season of A. (S.) pectinata occurred once a year from June to September, indicating a unimodal gametogenic cycle during the year. Shell heights of sexually mature pen shells (size at 50% of group sexual maturity, $GM_{50}$) that were fitted to an exponential equation were 15.81 cm in females and 15.72 cm in males (considered to be one year old).

Sexual Maturity and Growth Characteristics of Octopus minor (낙지 (Octopus minor)의 성 성숙과 성장 특성)

  • Kim, Dong-Soo;Kim, Jae-Man
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.5
    • /
    • pp.410-418
    • /
    • 2006
  • Sexual maturity and growth characteristics of Octopus minor were investigated in 796 individuals from mud flats in Goorori, Muan-Goon, Korea. Gonadosomatic index (GSI) peaked between June and July in females and between November and January in males. The discrepancy in the index peaks between females and males might result from the earlier sexual maturation of males. The sex ratio was biased toward females (68%) in April and toward males (78%) in September, although the differences were not significant (p>0.05). In females, about 50% of individuals with a mantle length of 70.6 mm were sexually mature versus 100% of individuals with mantle lengths over 80 mm. In females, fecundity was also related to size, ranging from 44 eggs in individuals with a mantle length of 54 mm to 179 eggs in the female with a mantle length of 100.5 mm. The relationship between mantle length (ML) an body weight (BW) was BW=0.008 ML$^{2.2797}$ (n=389, r$^2$=0.83, p<0.01) in males and BW=0.029 ML$^{2.2797}$ (n=407, r$^2$=0.74, p<0.01) in females. Analysis of co-variation showed that the difference in the slopes of the two regression lines was significant (p<0.01). Analysis of mantle length-frequency for each month revealed 1 to 3 normal distribution modes. The growth parameters obtained by fitting the modal progression to the seasonalized von Bertalanffy growth function (VBGF) were ML$\infty$= 112.38 mm, K=1.9, C=0.90, and WP=0.1. The results indicate that the seasonal growth oscillation of the stock is very strong and winter is the season when growth is the slowest.