• Title/Summary/Keyword: SER (Speech Emotion Recognition)

Search Result 9, Processing Time 0.026 seconds

A Proposal of an Interactive Simulation Game using SER (Speech Emotion Recognition) Technology (SER 기술을 이용한 대화형 시뮬레이션 게임 제안)

  • Lee, Kang-Hee;Jeon, Seo-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.445-446
    • /
    • 2019
  • 본 논문에서는 단순히 필요한 정보를 얻기 위한 수준에 그쳤던 현대의 인공지능을 SER (Speech Emotion Recognition) 기술을 이용하여 사용자와 직접적으로 대화하는 형식으로 발전시키고자 한다. 사용자의 음성 언어에서 감정을 추출하여 인공지능 분야 및 챗봇과 대화함에 있어 좀더 효과적으로 해석할 수 있도록 도움을 준다. 이것을 대화형 시뮬레이션 게임에 접목시켜 단순한 선택형 대화 방식이 아닌 구어체로 대화하며 사용자에게 높은 몰입도를 줄 수 있다.

  • PDF

Speech Emotion Recognition Using 2D-CNN with Mel-Frequency Cepstrum Coefficients

  • Eom, Youngsik;Bang, Junseong
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.3
    • /
    • pp.148-154
    • /
    • 2021
  • With the advent of context-aware computing, many attempts were made to understand emotions. Among these various attempts, Speech Emotion Recognition (SER) is a method of recognizing the speaker's emotions through speech information. The SER is successful in selecting distinctive 'features' and 'classifying' them in an appropriate way. In this paper, the performances of SER using neural network models (e.g., fully connected network (FCN), convolutional neural network (CNN)) with Mel-Frequency Cepstral Coefficients (MFCC) are examined in terms of the accuracy and distribution of emotion recognition. For Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset, by tuning model parameters, a two-dimensional Convolutional Neural Network (2D-CNN) model with MFCC showed the best performance with an average accuracy of 88.54% for 5 emotions, anger, happiness, calm, fear, and sadness, of men and women. In addition, by examining the distribution of emotion recognition accuracies for neural network models, the 2D-CNN with MFCC can expect an overall accuracy of 75% or more.

Feature Vector Processing for Speech Emotion Recognition in Noisy Environments (잡음 환경에서의 음성 감정 인식을 위한 특징 벡터 처리)

  • Park, Jeong-Sik;Oh, Yung-Hwan
    • Phonetics and Speech Sciences
    • /
    • v.2 no.1
    • /
    • pp.77-85
    • /
    • 2010
  • This paper proposes an efficient feature vector processing technique to guard the Speech Emotion Recognition (SER) system against a variety of noises. In the proposed approach, emotional feature vectors are extracted from speech processed by comb filtering. Then, these extracts are used in a robust model construction based on feature vector classification. We modify conventional comb filtering by using speech presence probability to minimize drawbacks due to incorrect pitch estimation under background noise conditions. The modified comb filtering can correctly enhance the harmonics, which is an important factor used in SER. Feature vector classification technique categorizes feature vectors into either discriminative vectors or non-discriminative vectors based on a log-likelihood criterion. This method can successfully select the discriminative vectors while preserving correct emotional characteristics. Thus, robust emotion models can be constructed by only using such discriminative vectors. On SER experiment using an emotional speech corpus contaminated by various noises, our approach exhibited superior performance to the baseline system.

  • PDF

Speech Emotion Recognition Based on Deep Networks: A Review (딥네트워크 기반 음성 감정인식 기술 동향)

  • Mustaqeem, Mustaqeem;Kwon, Soonil
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.331-334
    • /
    • 2021
  • In the latest eras, there has been a significant amount of development and research is done on the usage of Deep Learning (DL) for speech emotion recognition (SER) based on Convolutional Neural Network (CNN). These techniques are usually focused on utilizing CNN for an application associated with emotion recognition. Moreover, numerous mechanisms are deliberated that is based on deep learning, meanwhile, it's important in the SER-based human-computer interaction (HCI) applications. Associating with other methods, the methods created by DL are presenting quite motivating results in many fields including automatic speech recognition. Hence, it appeals to a lot of studies and investigations. In this article, a review with evaluations is illustrated on the improvements that happened in the SER domain though likewise arguing the existing studies that are existence SER based on DL and CNN methods.

Speech and Textual Data Fusion for Emotion Detection: A Multimodal Deep Learning Approach (감정 인지를 위한 음성 및 텍스트 데이터 퓨전: 다중 모달 딥 러닝 접근법)

  • Edward Dwijayanto Cahyadi;Mi-Hwa Song
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.526-527
    • /
    • 2023
  • Speech emotion recognition(SER) is one of the interesting topics in the machine learning field. By developing multi-modal speech emotion recognition system, we can get numerous benefits. This paper explain about fusing BERT as the text recognizer and CNN as the speech recognizer to built a multi-modal SER system.

Unraveling Emotions in Speech: Deep Neural Networks for Emotion Recognition (음성을 통한 감정 해석: 감정 인식을 위한 딥 뉴럴 네트워크 예비 연구)

  • Edward Dwijayanto Cahyadi;Mi-Hwa Song
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.411-412
    • /
    • 2023
  • Speech emotion recognition(SER) is one of the interesting topics in the machine learning field. By developing SER, we can get numerous benefits. By using a convolutional neural network and Long Short Term Memory (LSTM ) method as a part of Artificial intelligence, the SER system can be built.

A Comparison of Effective Feature Vectors for Speech Emotion Recognition (음성신호기반의 감정인식의 특징 벡터 비교)

  • Shin, Bo-Ra;Lee, Soek-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1364-1369
    • /
    • 2018
  • Speech emotion recognition, which aims to classify speaker's emotional states through speech signals, is one of the essential tasks for making Human-machine interaction (HMI) more natural and realistic. Voice expressions are one of the main information channels in interpersonal communication. However, existing speech emotion recognition technology has not achieved satisfactory performances, probably because of the lack of effective emotion-related features. This paper provides a survey on various features used for speech emotional recognition and discusses which features or which combinations of the features are valuable and meaningful for the emotional recognition classification. The main aim of this paper is to discuss and compare various approaches used for feature extraction and to propose a basis for extracting useful features in order to improve SER performance.

A Study on Emotion Recognition of Chunk-Based Time Series Speech (청크 기반 시계열 음성의 감정 인식 연구)

  • Hyun-Sam Shin;Jun-Ki Hong;Sung-Chan Hong
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.11-18
    • /
    • 2023
  • Recently, in the field of Speech Emotion Recognition (SER), many studies have been conducted to improve accuracy using voice features and modeling. In addition to modeling studies to improve the accuracy of existing voice emotion recognition, various studies using voice features are being conducted. This paper, voice files are separated by time interval in a time series method, focusing on the fact that voice emotions are related to time flow. After voice file separation, we propose a model for classifying emotions of speech data by extracting speech features Mel, Chroma, zero-crossing rate (ZCR), root mean square (RMS), and mel-frequency cepstrum coefficients (MFCC) and applying them to a recurrent neural network model used for sequential data processing. As proposed method, voice features were extracted from all files using 'librosa' library and applied to neural network models. The experimental method compared and analyzed the performance of models of recurrent neural network (RNN), long short-term memory (LSTM) and gated recurrent unit (GRU) using the Interactive emotional dyadic motion capture Interactive Emotional Dyadic Motion Capture (IEMOCAP) english dataset.

Spontaneous Speech Emotion Recognition Based On Spectrogram With Convolutional Neural Network (CNN 기반 스펙트로그램을 이용한 자유발화 음성감정인식)

  • Guiyoung Son;Soonil Kwon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.284-290
    • /
    • 2024
  • Speech emotion recognition (SER) is a technique that is used to analyze the speaker's voice patterns, including vibration, intensity, and tone, to determine their emotional state. There has been an increase in interest in artificial intelligence (AI) techniques, which are now widely used in medicine, education, industry, and the military. Nevertheless, existing researchers have attained impressive results by utilizing acted-out speech from skilled actors in a controlled environment for various scenarios. In particular, there is a mismatch between acted and spontaneous speech since acted speech includes more explicit emotional expressions than spontaneous speech. For this reason, spontaneous speech-emotion recognition remains a challenging task. This paper aims to conduct emotion recognition and improve performance using spontaneous speech data. To this end, we implement deep learning-based speech emotion recognition using the VGG (Visual Geometry Group) after converting 1-dimensional audio signals into a 2-dimensional spectrogram image. The experimental evaluations are performed on the Korean spontaneous emotional speech database from AI-Hub, consisting of 7 emotions, i.e., joy, love, anger, fear, sadness, surprise, and neutral. As a result, we achieved an average accuracy of 83.5% and 73.0% for adults and young people using a time-frequency 2-dimension spectrogram, respectively. In conclusion, our findings demonstrated that the suggested framework outperformed current state-of-the-art techniques for spontaneous speech and showed a promising performance despite the difficulty in quantifying spontaneous speech emotional expression.