• 제목/요약/키워드: SEM-EDXA

검색결과 16건 처리시간 0.024초

황산구리와 탄산나트륨 처리 목재 내의 물불용성 구리화합물의 생성과 방부효력 (Formation and Preservative Effectiveness of Water-Insoluble Copper Compound in Wood Treated with Copper Sulfate and Sodium Carbonate)

  • 김진경;이종신
    • 한국가구학회지
    • /
    • 제19권5호
    • /
    • pp.358-364
    • /
    • 2008
  • Wood-inorganic material composite (WIC) was prepared by impregnating wood with copper sulfate ($CuSO_4\;5H_2O$) solution and by immersed wood in sodium carbonate($Na_2CO_3$) solution in order to introduce insoluble copper compounds {copper carbonate hydroxide, $CuCO_3\;Cu(OH)_2$} into the wood to give fungicidal effects in treated-wood. The weight percent gains (WPGs) of treated wood reached maximum value by impregnation of 20% copper sulfate solution and immersion in about 15% sodium carbonate solution for 24 hrs. Inorganic substances were present mainly in the lumina and cross-field pitting of tracheides. These substances were proved to be the insoluble copper carbonate hydroxide against water by the energy dispersive X-ray analyzer in conjunction with a scanning electron microscope (SEM-EDXA). The treated specimens showed high preservative effectiveness because the weight losses were hardly occurred by the fungi degradation test.

  • PDF

Composite Membrane Containing a Proton Conductive Oxide for Direct Methanol Fuel Cell

  • Peck, Dong-Hyun;Cho, Sung-Yong;Kim, Sang-Kyung;Jung, Doo-Hwan;Kim, Jeong-Soo
    • 전기화학회지
    • /
    • 제11권1호
    • /
    • pp.11-15
    • /
    • 2008
  • The composite membrane for direct methanol fuel cell (DMFC) was developed using $H_3O^+-{\beta}"-Al_2O_3$ powder and perfluorosulfonylfluroride copolymer (Nafion) resin. The perfluorosulfonylfluroride copolymer (Nafion) resin was mixed with $H_3O^+-{\beta}"-Al_2O_3$ powder and it was made to sheet form by hot pressing. The electrodes were prepared with 60 wt% PtRu/C and 60wt% Pt/C catalysts for anode and cathode, respectively. The morphology and the chemical composition of the composite membrane have been investigated by using SEM and EDXA, respectively. The composite membrane and $H_3O^+-{\beta}"-Al_2O_3$ were analyzed by using FT-IR and XRD. The methanol permeability of the composite membranes was also measured by gas chromatography (GC). The performance of the MEA containing the composite membrane (2wt% $H_3O^+-{\beta}"-Al_2O_3$) was higher than that of normal pure Nafion membrane at high operating temperature (e.g. $110^{\circ}C$), due to the homogenous distribution of $H_3O^+-{\beta}"-Al_2O_3$, which decreased the methanol permeability through the membrane and enhanced the water contents in the composite membrane.

석면 분석방법에 대한 고찰 (Review on asbestos analysis)

  • 함승헌;황성호;윤충식;박동욱
    • 한국산업보건학회지
    • /
    • 제19권3호
    • /
    • pp.213-232
    • /
    • 2009
  • This document was prepared to review and summarize the analytical methods for airborne and bulk asbestos. Basic principles, shortcomings and advantages for asbestos analytical instruments using phase contrast microscopy(PCM), polarized light microscopy(PLM), X-ray diffractometer (XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM) were reviewed. Both PCM and PLM are principal instrument for airborne and bulk asbestos analysis, respectively. If needed, analytical electron microscopy is employed to confirm asbestos identification. PCM is used originally for workplace airborne asbestos fiber and its application has been expanded to measure airborne fiber. Shortcoming of PCM is that it cannot differentiate true asbestos from non asbestos fiber form and its low resolution limit ($0.2{\sim}0.25{\mu}m$). The measurement of airborne asbestos fiber can be performed by EPA's Asbestos Hazard Emergency Response Act (AHERA) method, World Health Organization (WHO) method, International Standard Organization (ISO) 10312 method, Japan's Environmental Asbestos Monitoring method, and Standard method of Indoor Air Quality of Korea. The measurement of airborne asbestos fiber in workplace can be performed by National Institute for Occupational Safety and Health (NIOSH) 7400 method, NIOSH 7402 method, Occupational Safety and Health Administration (OSHA) ID-160 method, UK's Health and Safety Executive(HSE) Methods for the determination of hazardous substances (MDHS) 39/4 method and Korea Occupational Safety and Health Agency (KOSHA) CODE-A-1-2004 method of Korea. To analyze the bulk asbestos, stereo microscope (SM) and PLM is required by EPA -600/R-93/116 method. Most bulk asbestos can be identified by SM and PLM but one limitation of PLM is that it can not see very thin fiber (i.e., < $0.25{\mu}m$). Bulk asbestos analytical methods, including EPA-600/M4-82-020, EPA-600/R-93/116, OSHA ID-191, Laboratory approval program of New York were reviewed. Also, analytical methods for asbestos in soil, dust, water were briefly discussed. Analytical electron microscope, a transmission electron microscope equipped with selected area electron diffraction (SAED) and energy dispersive X-ray analyser(EDXA), has been known to be better to identify asbestiform than scanning electron microscope(SEM). Though there is no standard SEM procedures, SEM is known to be more suitable to analyze long, thin fiber and more cost-effective. Field emission scanning electron microscope (FE-SEM) imaging protocol was developed to identify asbestos fiber. Although many asbestos analytical methods are available, there is no method that can be applied to all type of samples. In order to detect asbestos with confidence, all advantages and disadvantages of each instrument and method for given sample should be considered.

건축재료에서 발생되는 석면입자의 특성 연구 (The Characteristics of Dispersed Asbestos Fibers Produced From Building Materials)

  • 유성환
    • 한국대기환경학회지
    • /
    • 제9권3호
    • /
    • pp.191-199
    • /
    • 1993
  • This paper describes the results of a systematic study to determine the characteristics of particle generated from various types of asbestos containing material(ACM) and manmade fiber material(MMFM) during operations of cutting and grinding in laboratory and workplace. Tests were conducted with a specially designed glove box which allowed complete sampling of the generated asbestos fibers. Specificially, air measurements were made during ACM and MMFM installation in building. All personal air samples collected were identified by polarized light microscopy(PLM), X-ray diffraction(XRD) and scanning electron microscope with energy dispersive X-ray analysis(SEM/EDXA). Also, the samples were counted by phase contrast microscope(PCM) in order to compare the results with the permissible exposure standard for workplace. Results indicate that the characterisitcs of fibers found in the roofing sheet, the ceiling and the wall insulation boards were identical to those of asbestos, while the characteristics of fibers found in the ceiling insulation board, the floor tile and the sprayed on insulation products in parking area were identical to those of asbestos, while the characteristics of fibers found in the ceiling insulation board, the floor tile and the sprayed on insulation products in parking area were identical to those of rock wool. The concentrations of airborne fibers from various building materials cut by a grinder for 5 minutes were in the ranges of 0.09 $\sim$ 1.71 fibers/cc(f/cc). The highest concentration(1.71f/cc) was found during grinding the wall insulation board which also contains rock wool. The airborne fiber concentrations generated by installing at workplace were ranged from 0.0009 to 0.029 f/cc. All asbestos fibers from the ceiling insulation board at workplace were less than 20$\mu$m in length and more than 20% of them had the average aspect ratio greater than 20. Therefore, for the purpose of decreasing asbestos and man-made fiber concentrations at the workplace, the ceiling and wall board should use strong binding material to increase the binding force with fiber. Also, the permissible exposure standard for workplace(2.0f/cc) in Korea should be constituted below the maximum avaiable concentration measured at glove box.

  • PDF

연료단지 진폐증 환자 분포현황 및 노출특성 (Distribution and Exposure Characteristics of Pneumoconiosis Patients in Fuel Complexes)

  • 정종현
    • 한국환경과학회지
    • /
    • 제33권2호
    • /
    • pp.161-168
    • /
    • 2024
  • This study was conducted to identify the pollutants generated by the fuel complex and to determine the health effects of the surrounding residents. In addition, based on the results of epidemiological surveys and health impact surveys of local residents, we analyze the distribution of patient groups and exposure characteristics according to the distance from the fuel complex boundary. Samples were collected from the briquette plant within the fuel complex and analyzed by SEM-EDXA, X-ray Fluorescence Spectrometer, and ICP. In addition, the distribution of patients and exposure characteristics were analyzed according to the distance from the fuel complex and yard boundaries. Analysis of briquette samples from the fuel complex showed that the average particle size was 10-30 ㎛, the shape was irregular, and SiO2 accounted for more than 50%. It is believed that silica, which causes pneumoconiosis, may have been scattered into the air. In particular, there was a large distribution of 5 ㎛ particles that affect respiratory diseases. According to the analysis of the residential addresses and distribution of pneumoconiosis cases, many pneumoconiosis cases were located in the area between 200 and 500 meters from the boundary of the fuel complex. In addition, 28 pneumoconiosis cases were identified as a result of the epidemiological survey and health impact survey at the fuel complex. In detail, there were 8 cases of occupational pneumoconiosis, 6 cases of environmental pneumoconiosis, and 14 cases of occupational and environmental pneumoconiosis. The confirmed pneumoconiosis cases were located between 0.3 and 1.1 kilometers from the fuel complex. It was found that environmental pollutants generated by the fuel complex adversely affect the health of local residents. In particular, there are many cases of pneumoconiosis in the area between 200 and 500 meters from the boundary of the fuel complex, and this distance is considered to be the direct and indirect impact zone of the briquette plant.

석탄 화력발전소에서 발생되는 석탄회 특성과 형성 분석에 관한 연구 (Physical, Morphological, and Chemical Analysis of Fly Ash Generated from the Coal Fired Power Plant)

  • 이정언;이재근
    • 에너지공학
    • /
    • 제7권1호
    • /
    • pp.146-156
    • /
    • 1998
  • 석탄을 연소한 후 형성되는 석탄회는 미세한 분말상태로 입자의 형상은 다공성이며 단단한 구형입자로 이루어져 있다. 본 연구에서는 국내 발전소에서 생성된 9종의 석탄회의 물리적, 형태적 및 화학적 조성 분석을 통해 국내 석탄회 데이터 베이스화, 연소효율 개선, 석탄회 집진설비인 전기집진기의 성능향상과 석탄회의 재활용에 기여하고자 한다. 석탄회의 물리적 특성은 입도분포와 비중을 입자카운터와 한국공업규격(KS L-5110)에 따른 비중 측정계를 이용하였으며, 형태적 특성은 입자의 구형성 정도, 표면특성 그리고 색상변화 등을 전자현미경(SEM)과 광학현미경을 이용하였다. 그리고 화학적 특성을 파악하기 위해 유도결합 플라즈마방출 분광기(ICP)와 에너지스펙트럼 분석기(EDXA)를 이용하여 석탄회의 구성성분을 분석하였고 한국공업규격 KS L-5405에 따른 석탄회에 함유된 미연탄소분을 측정하였다. 삼천포 화력발전소 전기집진기에서 포집한 석탄회에 대한 질량평균입경은 각각 15~25 $\mu\textrm{m}$로 나타났다. 석탄회 입자의 형상은 석탄 입자가 보일러의 연소 영역에 노출되는 정도에 따라 구형성, 투명성 및 색변화가 다양하게 나타나는데 완전 연소에 가까울수록 무색의 구형입자가 형성되었다. 석탄회는 보일러 내의 연소 조건과 원탄의 성분에 따라 구형, 무정형, Cenosphere 그리고 Plerosphere와 같은 유형의 입자를 형성하며 입자간의 상호 작용에 의해 집괴, 응집 그리고 결정형의 입자군들을 형성한다. 석탄회는 산회광물질로 이루어져 있으며 주성분 SiO2, Fe2O3, Al2O3로 약 85% 이상을 차지하였으며 10% 정도는 미연탄소분으로 이루어져 있었다.

  • PDF