• Title/Summary/Keyword: SDS-PAGE

Search Result 1,885, Processing Time 0.022 seconds

Hydrolysis of Rice Syrup Meal Using Various Commercial Proteases (쌀 시럽박의 단백질 가수분해 특성)

  • Kim, Chang-Won;Park, Jin-Woo;Choi, Hyuk-Joon;Han, Bok-Kyung;Yoo, Seung-Seok;Kim, Byung-Yong;Baik, Moo-Yeol;Kim, Young-Rok
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.309-315
    • /
    • 2011
  • Rice syrup meal (RSM) was enzymatically hydrolyzed using eight commercial proteases (Protamex, Neutrase, Flavourzyme, Alcalase, Protease M, Protease N, Protease A, Molsin F) for 4 hr at optimum pH and temperature. Proteolytic hydrolysates were examined in supernatant and precipitate using Lowry protein assay, semimicro Kjeldahl method and gravimetric method using weight difference before and after enzymatic hydrolysis. Although RSM contains a high amount of protein (71.2%), only a very small amount of protein was hydrolyzed. Two proteases (Protease M and Protease N) were found to be the most effective in the hydrolysis of RSM protein. In Lowry method, 57.5 and 59.0 mg protein/g RSM were hydrolyzed after Protease M and Protease N treatments, respectively. In gravimetric method, 80.0 and 85.4 mg protein/g RSM were hydrolyzed after Protease M and Protease N treatments. In Kjeldahl method, 67.43 and 70.43 mg protein/g RSM were hydrolyzed after Protamex and Protease N treatments, respectively. For synergistic effect, two or three effective commercial proteases (Protease M, Protease N and Protease A) were applied to RSM at one time. The highest hydrolysis of RSM protein was observed in both Lowry protein assay (80.3 mg protein/g RSM) and gravimetric methods (153.2 mg protein/g RSM) when three commercial proteases were applied at one time, suggesting the synergistic effect of those proteases.

Effects of Environmental Temperature and Antibiotic Substitute on Quality of Chicken Breast Meat (환경온도와 항생제 대체물질이 닭 가슴살의 품질에 미치는 영향)

  • Kang, Geun-Ho;Kim, Sang-Ho;Kim, Ji-Hyuk;Kang, Hwan-Ku;Kim, Dong-Wook;Cho, Soo-Hyun;Seong, Pil-Nam;Park, Beom-Young;Kim, Dong-Hun
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.261-268
    • /
    • 2010
  • This study was conducted to investigate the effects of environmental temperature (ET; $21^{\circ}C$ and $32^{\circ}C$) and antibiotic substitute conditions on meat quality of chicken breast during cold storage. Seven treatments were as follows; T1, ET $21^{\circ}C$ + antibiotics (+); T2, ET $21^{\circ}C$ + antibiotics (-); T3, ET $32^{\circ}C$ + antibiotics (+); T4, ET $32^{\circ}C$ + antibiotics (-); T5, ET $32^{\circ}C$ + 0.1% Lactobacillus; T6, ET $32^{\circ}C$ + 0.1% medicinal plant extract; T7, ET $32^{\circ}C$ + 0.1% essential oil. T7 had a higher (p<0.05) pH at 72 h post-slaughter value when compared to the other treatments. The CIE $b^*$ value of treatments at ET $32^{\circ}C$ showed significantly (p<0.05) higher when compared to the treatments at $21^{\circ}C$. T7 also had significantly (p<0.05) lower TBARS values than the other treatments as the storage time increased. T6 contained significantly (p<0.05) higher extractability of salt-soluble protein contents than the other treatments. The results from SDS-PAGE showed that the actin protein decreased for ET treatments at $32^{\circ}C$. The concentration of actin protein was not significantly different among T1, T2 and T7. Therefore, these result suggested that the antibiotic alternative with essential oil was effective under the high environmental temperature ($32^{\circ}C$) for chicken meat production.

Comparison of antioxidant capacity of protein hydrolysates from 4 different edible insects (식용곤충별 단백가수분해물의 항산화 활성 비교)

  • Jang, Hyun-Young;Park, Chae-Eun;Lee, Syng-Ook
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.480-485
    • /
    • 2019
  • The present study was conducted to compare antioxidant capacities of protein hydrolysates from four different edible insects (Protaetia brevitarsis larvae, Allomyrina dichotoma larvae, Gryllus bimaculatus imago, and Tenebrio molitor larvae) which have recently been registered as food varieties in Korea. Protein hydrolysates were prepared from each insect using enzymatic hydrolysis using alcalase, and were then separated into a fraction containing ${\leq}3kDa$. According to $RC_{50}$ values and trolox equivalent antioxidant capacity results obtained from five different antioxidant analyses, the Gryllus bimaculatus (GB) hydrolysate showed relatively high levels of antioxidant capacity and, in particular, the GB hydrolysate showed considerably strong antioxidant activities in 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and in ferric reducing antioxidant power (FRAP) assays. The GB hydrolysate also showed the strongest inhibitory effect on peroxidation of linoleic acid, and its rate of inhibition at $100{\mu}g/mL$ on day 3 of treatment was 60.26%. These results suggest that protein hydrolysates from edible insects including GB represent potential sources of natural antioxidants.

Effects of Feeding Enzyme-Hydrolyzed Poultry By-Product Meal on Productivity and Blood Biochemical Characteristics in Broilers (효소가수분해 도계부산물의 급여가 육계의 생산성 및 혈액 생화학적 특성에 미치는 영향)

  • Gwak, Min-Geun;Park, Hye-Sung;Kim, Bong-Ki;Park, Hee-Bok;Kim, Ji-Hyuk
    • Korean Journal of Poultry Science
    • /
    • v.48 no.3
    • /
    • pp.133-142
    • /
    • 2021
  • The purpose of this study was to investigate whether enzyme-hydrolyzed poultry by-product meal (EHPBM) is more effective as a protein source than poultry by-product meal (PBM) and soybean meal (SBM) for broiler chickens. A group of 300 one-day-old broiler chicks was randomly allocated to three treatments with five replicates (20 birds/replicate) for five weeks. The treatments consisted of basal diets containing 1) SBM, 2) PBM, and 3) EHPBM. The EHPBM-fed group (1,853 g±125.60) showed the highest final body weight (P<0.05) when compared to the PBM-fed group (1,723 g±76.81) and SBM-fed group (1,545 g±62.31). The feed conversion ratio of the EHPBM treatment group (1.740±0.104) was significantly higher (P<0.05) than those of the SBM (1.653±0.056) and PBM groups (1.674±0.072). It can be speculated that the increased feed intake in the EHPBM group led to higher body weight gain and FCR. There was no significant effect of treatments on internal organ weight except for the bursa of Fabricius. Blood biochemical characteristic analysis showed that aspartate aminotransferase and alkaline phosphatase levels were higher in the EHPBM and PBM groups (P<0.05), probably due to the strained liver caused by the rapid growth of birds. In conclusion, EHPBM may partly replace conventional dietary protein sources such as soybean meal or poultry by-product meal and can be used to improve the productivity of broilers.

Cell Migration and Wound Healing Activities of Recombinant Thymosin β-4 Expressed in Escherichia coli (재조합 Thymosin β-4의 세포이동능과 상처치유능)

  • Hong, Kyo-Chang;Choi, Yung Hyun;Kim, Gun-Do;Cha, Hee-Jae;Jeon, Sung-Jong;Nam, Soo-Wan
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.135-141
    • /
    • 2022
  • Thymosin β-4 (TB4) is a small peptide composed of 43 amino acids. To obtain sufficient biologically active mouse TB4 economically, we cloned and overexpressed this gene in an Escherichia coli system. With the isopropyl β-D-1-thiogalactopyranoside induction of the E. coli transformant, TB4 fusion protein with intein- and chitin-binding domain was successfully expressed in the soluble fraction within the E. coli cell. The TB4-intein - chitin-binding domain fusion protein was purified from the soluble fraction of E. coli cell lysate. The affinity chromatography with chitin beads and dithiothreitol-mediated intein self-cleavage reaction releases the TB4 peptide into the stripping solution. Sodium dodecyl sulphate - polyacrylamide gel electrophoresis and Western blot analyses were used to confirm that the recombinant TB4 peptide was produced with the expected size of 5 kDa. We found that the recombinant TB4 stimulated cell migration in the transwell plate chamber assay. After 18 hr of the treatment of the recombinant TB4 with 1 ng/ml concentration, the migration of the HT1080 cell was increased by 20% compared with that of the chemically synthesized TB4. The recombinant TB4 was also observed to promote the healing of a wound area in C57BL/6 mice by as high as 35% compared with that of the chemically synthesized TB4. These results suggest that the recombinant TB4 has better biological activity for cell migration and wound healing than that of the chemically synthesized TB4 peptide.