• 제목/요약/키워드: SDOF structure

검색결과 101건 처리시간 0.02초

Critical earthquake loads for SDOF inelastic structures considering evolution of seismic waves

  • Moustafa, Abbas;Ueno, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제1권2호
    • /
    • pp.147-162
    • /
    • 2010
  • The ground acceleration measured at a point on the earth's surface is composed of several waves that have different phase velocities, arrival times, amplitudes, and frequency contents. For instance, body waves contain primary and secondary waves that have high frequency content and reach the site first. Surface waves are composed of Rayleigh and Love waves that have lower phase velocity, lower frequency content and reach the site next. Some of these waves could be of more damage to the structure depending on their frequency content and associated amplitude. This paper models critical earthquake loads for single-degree-of-freedom (SDOF) inelastic structures considering evolution of the seismic waves in time and frequency. The ground acceleration is represented as combination of seismic waves with different characteristics. Each seismic wave represents the energy of the ground motion in certain frequency band and time interval. The amplitudes and phase angles of these waves are optimized to produce the highest damage in the structure subject to explicit constraints on the energy and the peak ground acceleration and implicit constraints on the frequency content and the arrival time of the seismic waves. The material nonlinearity is modeled using bilinear inelastic law. The study explores also the influence of the properties of the seismic waves on the energy demand and damage state of the structure. Numerical illustrations on modeling critical earthquake excitations for one-storey inelastic frame structures are provided.

Numerical assessment of step-by-step integration methods in the paradigm of real-time hybrid testing

  • Verma, Mohit;Rajasankar, J.;Iyer, Nagesh R.
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1325-1348
    • /
    • 2015
  • Real-time hybrid testing (RTHT) involves virtual splitting of the structure into two parts: physical substructure that contains the key region of interest which is tested in a laboratory and numerical substructure that contains the remaining part of the structure in the form of a numerical model. This paper numerically assesses four step-by-step integration methods (Central difference method (CDM), Operator splitting method (OSM), Rosenbrock based method (RBM) and CR-integration method (CR)) which are widely used in RTHT. The methods have been assessed in terms of stability and accuracy for various realistic damping ratios of the physical substructure. The stability is assessed in terms of the spectral radii of the amplification matrix while the accuracy in terms of numerical damping and period distortion. In order to evaluate the performance of the methods, five carefully chosen examples have been studied - undamped SDOF, damped SDOF, instantaneous softening, instantaneous hardening and hysteretic system. The performance of the methods is measured in terms of a non-dimensional error index for displacement and velocity. Based on the error indices, it is observed that OSM and RBM are robust and performs fairly well in all the cases. CDM performed well for undamped SDOF system. CR method can be used for the system showing softening behaviour. The error indices indicate that accuracy of OSM is more than other method in case of hysteretic system. The accuracy of the results obtained through time integration methods for different damping ratios of the physical substructure is addressed in the present study. In the presence of a number of integration methods, it is preferable to have criteria for the selection of the time integration scheme. As such criteria are not available presently, this paper attempts to fill this gap by numerically assessing the four commonly used step-by-step methods.

비선형 시간 이력법에 의한 목조 가옥의 지진응답해석 (Seismic Response Analysis of Wood Structure Using Nonlinear Time History Method)

  • 김재관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.212-219
    • /
    • 1998
  • Dynamic analyses are performed for the wood structure modeled as a SDOF hysteretic system. The hysteresis model presented is a modified version of Takeda model. The comparison between the results of numerical simulation and the experimental results show good agreements in overall tendencies. The response of wood structure subjected to artificially generated earthquakes considering site effects is studied. It appears that the response is very strongly influenced by the intensity and the frequency contents of the ground motion.

  • PDF

트러스 구조물의 1 자유도 모형을 이용한 반능동 마찰 제어 방법의 과도 응답 저감 성능 비교 (Comparison of semi-active friction control method to reduce transient vibration using SDOF model of truss structure)

  • 박영민;김광준;오현웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.59-63
    • /
    • 2011
  • Friction damping is one of the attractive vibration control technique for space structures due to its simplicity and large damping capacity. However, passive approaches for friction damping have a limitation because energy is no longer dissipated at sticking. In order to overcome this problem, semi-active control methods to adjust normal force at frictional interface have been studied in previous researches. In this paper, two semi-active friction control method is compared by simulating SDOF model of truss structure. The first approach is on-off control to maximize rate of energy dissipation, whereas the second concept is variable friction force control to minimize amplitude ratio for each half period. The maximum friction force, control variable in on-off control method, is obtained to minimize 1% settling time, and is different from optimal friction force in passive control. Simulation results show that performance of on-off control is better than that of variable friction force control in terms of settling time and controlled friction force.

  • PDF

A methodology to estimate earthquake induced worst failure probability of inelastic systems

  • Akbas, Bulent;Nadar, Mustafa;Shen, Jay
    • Structural Engineering and Mechanics
    • /
    • 제29권2호
    • /
    • pp.187-201
    • /
    • 2008
  • Earthquake induced hysteretic energy demand for a structure can be used as a limiting value of a certain performance level in seismic design of structures. In cases where it is larger than the hysteretic energy dissipation capacity of the structure, failure will occur. To be able to select the limiting value of hysteretic energy for a particular earthquake hazard level, it is required to define the variation of hysteretic energy in terms of probabilistic terms. This study focuses on the probabilistic evaluation of earthquake induced worst failure probability and approximate confidence intervals for inelastic single-degree-of-freedom (SDOF) systems with a typical steel moment connection based on hysteretic energy. For this purpose, hysteretic energy demand is predicted for a set of SDOF systems subject to an ensemble of moderate and severe EQGMs, while the hysteretic energy dissipation capacity is evaluated through the previously published cyclic test data on full-scale steel beam-to-column connections. The failure probability corresponding to the worst possible case is determined based on the hysteretic energy demand and dissipation capacity. The results show that as the capacity to demand ratio increases, the failure probability decreases dramatically. If this ratio is too small, then the failure is inevitable.

비선형 변위모드법을 적용한 복합구조물의 내진성능평가 (Evaluation of Seismic Performance of Mixed Building Structures by using the Nonlinear Displacement Mode Method)

  • 김부식;송호산
    • 한국지진공학회논문집
    • /
    • 제7권6호
    • /
    • pp.71-80
    • /
    • 2003
  • 구조물의 내진 성능을 정확히 평가하기 위해서는 비선형 시각 이력 해석이 필요하지만 실용성과 단순성 측면에서 약산법이 대안이 될 수 있으며, 다층 구조물을 등가 단자유도계로 치환할 때 다층 구조물의 모드벡터는 구조물이 탄성 또는 탄소성 상태에 상관없이 탄성 상태에서의 모드 형상으로 가정되지만, 항복이 발생한 후 증가하는 하중단계에서 구조물은 비탄성으로 되기 때문에 변위 모드 특성들도 변화된다. 본 논문은 항복 이후의 구조물의 모드 변화를 고려한 비선형 변위모드를 이용하여 다자유도계를 등가 단자유도계로 변환하는 방법을 제시하였으며, 변환된 등가 단자유도계의 변위응답을 근거로 추정한 복합 구조물의 최상층 변위와 실제 지진교란을 받는 복합 구조물의 비선형 동적해석에 의한 최상층 변위를 비교함으로서 복합구조물의 지진응답예측을 위한 비선형 변위모드법의 적용성과 신뢰성을 검토하였다.

A new study in designing MTMDs in SDOF and MDOF systems based on the spectral analysis method

  • Baigoly, Morteza;Shargh, Farzan H.;Rofooei, Fayaz R.
    • Earthquakes and Structures
    • /
    • 제19권4호
    • /
    • pp.243-259
    • /
    • 2020
  • This study aims to optimize, design, and predict the MTMDs performance in SDOF systems using spectral analysis, and then apply their results to MDOF structures. Given the importance of spectral analysis in the design of new engineering structures, achieving a method for designing TMDs based on this theory can be of great importance for structural designers. In this study, several convenient combinations of MTMDs in an SDOF system are first considered to minimize the maximum displacement. For calculating the frequency ratios of dampers, an innovative technique is adopted in which the values of different modal responses obtained from the spectral analysis are approached together. This procedure is done using a harmony search (HS) algorithm. Also, using the random vibration theory, the damping ratio of the dampers is obtained. Then, an equation is presented for predicting the performance of MTMDs. For evaluating this equation, three structures with different stories are designed. Some of the presented combinations of dampers are added to them. The time history analyses are employed to analyze the structures under 30 different accelerograms. The findings indicated that the proposed equation could efficiently predict the performance of the MTMDs. Furthermore, four different patterns of damper distribution along the height of the structures are defined. The effect of them on the maximum deformation of the structures in time history analyses is discussed, and an equation is presented to estimate this effect. The results indicated that the average and maximum error percentages of the proposed equations are about three and seven percent, respectively, compared to the time history analyses results, which are negligible values.

다양한 하중의 진동제어를 위한 준능동 TMD의 이용 (Use of Semi-active Tuned Mass Dampers for Vibration Control under Various Excitations)

  • 김현수;김승준;이동근
    • 한국지진공학회논문집
    • /
    • 제10권1호
    • /
    • pp.51-62
    • /
    • 2006
  • 다양한 원인에 의해서 발생하는 구조물의 동적응답을 감소시키기 위하여 현재까지 여러 가지 형태의 동조질량감쇠기(Tuned Mass Damper; TMD)가 개발되었고 이에 대한 많은 연구가 수행되어 왔다. 본 연구에서는 구조물의 응답에 따라서 실시간으로 TMD의 감쇠를 변화시킬 수 있는 준능동 TMD(Semi-active TMD; STMD)의 제어성능을 다양한 형태의 하중을 적용하여 해석적으로 검토하였다. STMD를 구성하는 준능동 감쇠기의 감쇠력을 조절하기 위하여 skyhook 제어알고리즘을 이용하였다. 조화하중 및 임의의 동적하중을 직접가력하중과 지반진동하중 형태로 단자유도 구조물에 가하여 STMD와 일반적인 TMD의 제어성능을 비교하였다. 또한, 주구조물의 질량의 변화에 따른 TMD 및 STMD의 제어성능의 견실성을 비교하였다. 그리고, 가변감쇠장지 뿐만 아니라 MR 감쇠기를 사용한 STMD의 제어성능도 평가하여 새로운 진동제어장치로서의 활용가능성을 검토하였다. 수치해석을 수행한 결과 STMD는 TMD에 비하여 조화하중 및 임의의 동적하중에 대해서 매우 뛰어난 제어성능을 보이는 것을 확인할 수 있었다.

The effect of soil-structure interaction on inelastic displacement ratio of structures

  • Eser, Muberra;Aydemir, Cem
    • Structural Engineering and Mechanics
    • /
    • 제39권5호
    • /
    • pp.683-701
    • /
    • 2011
  • In this study, inelastic displacement ratios and ductility demands are investigated for SDOF systems with period range of 0.1-3.0 s. with elastoplastic behavior considering soil structure interaction. Earthquake motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil are used in analyses. Soil structure interacting systems are modeled with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. Results are compared with those calculated for fixed-base case. A new equation is proposed for inelastic displacement ratio of interacting system ($\tilde{C}_R$) as a function of structural period of interacting system ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}/T$). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.

Soil structure interaction effects on strength reduction factors

  • Eser, Muberra;Aydemir, Cem;Ekiz, Lbrahim
    • Structural Engineering and Mechanics
    • /
    • 제41권3호
    • /
    • pp.365-378
    • /
    • 2012
  • In this study, strength reduction factors are investigated for SDOF systems with period range of 0.1-3.0 s with elastoplastic behavior considering soil structure interaction for 64 different earthquake motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil. Soil structure interacting systems are modeled and analyzed with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. Results are compared with those calculated for fixed-base case. A new equation is proposed for strength reduction factor of interacting system as a function of structural period of system (T), ductility ratio (${\mu}$) and period lengthening ratio (T/T). It is concluded that soil structure interaction reduces the strength reduction factors for soft soils, therefore, using the fixed-base strength reduction factors for interacting systems lead to non-conservative design forces.