• Title/Summary/Keyword: SCW형

Search Result 9, Processing Time 0.016 seconds

An Analysis on the Bleeding Effect of SCW Ground Heat Exchanger using Thermal Response Test Data (열응답시험 데이터를 이용한 SCW형 지중열교환기 블리딩 효과 분석)

  • Chang, Keun-Sun;Kim, Min-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.512-520
    • /
    • 2020
  • Recently, the applications of the standing column well (SCW) ground heat exchanger (GHX) have increased significantly in Korea as a heat transfer mechanism of ground source heat pump systems (GSHP) because of its high heat capacity and efficiency. Among the various design and operating parameters, bleeding was found to be the most important parameter for improving the thermal performance, such as ground thermal conductivity and borehole thermal resistance. In this study, a bleeding analysis model was developed using the thermal response test data, and the effects of bleeding rates and bleeding locations on the thermal performance of anSCW were investigated. The results show that, when the ground water flows into the top of anSCW, the time variation of circulating water temperature decreased with increasing bleeding rate, and the ground thermal conductivity increases by as much as 179% with a 30% bleeding rate. When the ground water flows into the bottom of the SCW, the circulating water temperatures become almost constant after the increase in the beginning time because the circulating water exchanges heat with the ground structure before mixing with the ground water at the bottom.

A Study on the Heat Transfer Characteristics of Various Construction of SCW Type Ground Heat Exchanger (다양한 형상의 SCW형 지중 열교환기 열전달 특성에 관한 연구)

  • Chang, Keun-Sun;Kim, Min-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.10
    • /
    • pp.460-466
    • /
    • 2014
  • This paper uses in-situ thermal response tests to present the characteristics of the ground thermal conductivities of three different SCW GHX. These SCW GHXs were installed in the same site in Seojong City. The three different cases are distinguished by the flow direction and the presence of a filler. The first type (A) is constructed for water to flow downstream. The second (B) and third (C) types are designed for water to flow upstream, and a filler is additionally inserted into the third type. The results of the in-situ thermal response tests, indicate that the ground thermal conductivity for types (A), (B) and (C) are of $4.84W/m{\cdot}K$, $3.40W/m{\cdot}K$, and $11.62W/m{\cdot}K$, respectively.

Analysis of Economic Feasibility and Reductions of Carbon Dioxide Emission of Geothermal Heating and Cooling System using Groundwater (지하수를 이용한 지열 냉난방시스템의 경제성 및 이산화탄소 저감량 분석)

  • Kim, Jin-Sung;Song, Sung-Ho;Jeong, Gyo-Cheol;Cha, Jang-Hwan
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.599-612
    • /
    • 2015
  • The development of renewable energy technologies that can replace fossil fuels is environmentally important; however, such technologies must be economically feasible. Economic analyses are important for assessing new projects such as geothermal heating-cooling systems, given their large initial costs. This study analyzed the economics and carbon dioxide emissions of: a SCW (standing column well), a vertical closed loop boiler, a gas boiler, and an oil boiler. Life cycle cost analysis showed that the SCW geothermal heating-cooling system had the highest economic feasibility, as it had the highest cost saving and also the lowest carbon dioxide emissions. Overall, it appears that geothermal systems can save money when applied to large-scale controlled agriculture complexes and reclaimed land.

Study on the performance analysis of SCW geothermal system by simulation and monitoring (모니터링 및 시뮬레이션을 통한 SCW형 지열 시스템의 성능인자 분석에 관한 연구)

  • Lee, SangJun;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.2
    • /
    • pp.8-15
    • /
    • 2013
  • Recently, an interest in the use of renewable energy has been growing up due to the rise of raw material price, international oil price and depletion of fossil energy. Ground source heat pump system has a high efficiency by using the constant temperature of underground and various types of the systems have been installed and utilized in the building. there are few studies on the system performance factors in the SCW system. Furthermore, even though the performance of the system depends on the temperature of heat source, the research on their relationship is rare. In this research, in order to analyze the performance factor for the open-loop system the monitoring of the real building with the standing column well systems and the simulation with building model were conducted.

A Study on the Determining Initial Ignoring Time for the Analysis of Ground Thermal Conductivity of SCW Type Ground Heat Exchanger (SCW형 지중 열교환기의 지중 열전도도 해석에서 초기제외시간 결정에 관한 연구)

  • Chang, Keun-Sun;Kim, Min-Jun;Kim, Young-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.10
    • /
    • pp.453-459
    • /
    • 2014
  • This paper presents an analysis on the initial ignoring time of SCW type GHX using Mean Square Error method. Line source method is a useful method for estimating the ground thermal conductivity for the vertical type and SCW type GHX in Korea. The line source method for ground thermal conductivity of geothermal in-site test is the basis of linear approximation between the temperature of a borehole and logarithmic time in a GHX. To apply the line source method to the estimation of SCW type GHX, it is necessary to ignore the initial time of data at the stage of a linear approximation. This paper proposed a new initial ignoring time of SCW type GHX among various initial ignoring time at the time for reaching MSE of $0.02^{\circ}C^2$.

Thermal Conductivity from an in-situ Thermal Response Test Compared with Soil and Rock Specimens under Groundwater-bearing Conditions (지하수 부존지역에서의 토질 및 암석 시료와 현장 열응답시험의 열전도도 비교)

  • Kim, Jin-Sung;Song, Sung-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.389-398
    • /
    • 2013
  • Studies of the thermal properties of various rock types obtained from several locations in Korea have revealed significant differences in thermal conductivities in the thermal response test (TRT), which has been applied to the design of a ground-source heat pump system. In the present study, we aimed to compare the thermal conductivities of the samples with those obtained by TRT. The thermal conductivities of soil and rock samples were 1.32W/m-K and 2.88 W/m-K, respectively. In comparison, the measured TRT value for thermal conductivity was 3.13W/m-K, which is 10% higher than that of the rock samples. We consider that this difference may be due to groundwater flow because abundant groundwater is present in the study area and has a hydraulic conductivity of 0.01. It is natural to consider that the object of TRT is to calculate the original thermal conductivity of the ground, following the line source theory. Therefore, we conclude that the TRT applied to a domestic standing column type well is not suitable for a line source theory. To solve these problems, values of thermal conductivity measured directly from samples should be used in the design of ground-source heat pump systems.

Numerical Simulations for Optimal Utilization of Geothermal Energy under Groundwater-bearing Conditions (지하수 부존지역에서 최적 지열에너지 활용방식 수치 모의)

  • Kim, Jin-Sung;Cha, Jang-Hwan;Song, Sung-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.487-499
    • /
    • 2014
  • While the vertical open type of heat exchanger is more effective in areas of abundant groundwater, and is becoming more widely used, the heat exchanger most commonly used in geothermal heating and cooling systems in Korea is the vertical closed loop type. In this study, we performed numerical simulations of the optimal utilization of geothermal energy based on the hydrogeological and thermal properties to evaluate the efficiency of the vertical open type in areas of abundant groundwater supply. The first simulation indicated that the vertical open type using groundwater directly is more efficient than the vertical closed loop type in areas of abundant groundwater. Furthermore, a doublet system with separated injection and extraction wells was more efficient because the temperature difference (${\Delta}$) between the injection and extraction water generated by heat exchange with the ground is large. In the second simulation, we performed additional numerical simulations of the optimal utilization of geothermal energy that incorporated heat transfer, distance, flow rate, and groundwater hydraulic gradient targeting a single well, SCW (standing column well), and doublet. We present a flow diagram that can be used to select the optimal type of heat exchanger based on these simulation results. The results of this study indicate that it is necessary to examine the adequacy of the geothermal energy utilization system based on the hydrogeological and thermal properties of the area concerned, and also on a review of the COP (coefficient of performance) of the geothermal heating and cooling system.