• Title/Summary/Keyword: SC Beams

Search Result 23, Processing Time 0.018 seconds

Beam-Column Connection with 1200mm Deep Multi-Reduced Taper Beam for Intermediate Moment Frame (깊이 1200mm급 변단면보의 중간모멘트골조용 내진접합부 개발)

  • Jung, Si-Hwa;Alemayehe, Robel Wondimu;Park, Man-Woo;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.4
    • /
    • pp.135-146
    • /
    • 2019
  • Deep beam has high section modules compared with shallow beam of the same weight. However, deep beam has low rotational capacity and high possibility of brittle failure so it is not possible to apply deep beams with a long span to intermediate moment frames, which should exhibit a ductility of 0.02rad of a story drift angle of steel moment frames. Accordingly, KBC and AISC limit the beam depth for intermediate and special moment frame to 750mm and 920mm respectively. The purpose of this paper is to improve the seismic performance of intermediate moment frame with 1200mm depth beam. In order to enhance vulnerability of plastic deformation capacity of deeper beam, Multi-Reduced Taper Beam(MRTB) shape that thickness of beam flange is reinforced and at the same time some part of the beam flange width is weakened are proposed. Based on concept of multiple plastic hinge, MRTB is intended to satisfy the rotation requirement for intermediate moment frame by dividing total story drift into each hinge and to prevent the collapse of the main members by inducing local buckling and fracture at the plastic hinge location far away from connection. The seismic performance of MRTB is evaluated by cyclic load test with conventional connections type WUF-W, RBS and Haunch. Some of the proposed MRTB connection satisfies connection requirements for intermediate moment frame and shows improved the seismic performance compared to conventional connections.

Seismic Performance Evaluation of the Ceiling Bracket-type Modular System with Various Bracket Lengths and Bolt Types (천장 브래킷형 모듈러 시스템의 브래킷 길이와 볼트에 따른 내진성능평가)

  • Kwak, Eui-Shin;Kang, Chang-Hoon;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.25-33
    • /
    • 2018
  • In regard to modular systems, new methods, as well as middle and high-story unit design ideas, are currently being studied. These studies need to focus on the enhanced stiffness and seismic performance of these connections, and see that the development of fully restrained moment connections can improve the seismic performance. For this reason, this study evaluates the performance of the connections of the ceiling bracket-typed modular system through repeated loading tests and analyses. In order to compare them with these modular units, new unit specimens with the bracket connection being different from that of the traditional modular unit specimens were designed, and the results of repeated loading tests were analyzed. In the traditional units, the structural performances of both welding connection and bolt connection were evaluated. In regard to the testing results, the initial stiffness of the hysteresis curve was compared with the theoretical initial stiffness, and the features of all specimens were also analyzed with regard to the maximum moment. In addition, the test results were examined with regard to the connection flexural strength of the steel special moment frame specified under the construction criteria KBC2016. The connections, which were proposed in the test results, were found to be fully restrained moment connections for designing strong column-weak beams and meeting the requirements of seismic performance of special moment frames.

A Characteristic Study on Shear Strength of Reinforced Concrete Beams according to Shear Reinforcement Ratio and Beam Section Size (전단철근비와 보의 단면크기에 따른 철근콘크리트 보의 전단강도 특성 연구)

  • Noh, Hyung-Jin;Yu, In-Geun;Lee, Ho-Kyung;Baek, Seung-Min;Kim, Woo-Suk;Kwak, Yoon-Keun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.111-119
    • /
    • 2019
  • The purpose of this study is to investigate the shear strength of reinforced concrete beam according to beam section size and shear reinforcement ratio. A total of nine specimens were tested and designed concrete compressive strength is 24 MPa. The main variables are shear reinforcement ratio and beam section size fixed with shear span to depth ratio (a/d = 2.5), the tensile reinforcement ratio (${\rho}=0.013$) and width to depth ratio (h/b = 1.5). The test specimens were divided into three series of S1 ($225{\times}338mm$), S2 ($270{\times}405mm$) and S3 ($315{\times}473mm$), respectively. The experimental results show that all specimens represent diagonal tensile failure. For $S^*-1$ specimens (d/s=0), the shear strength decreased by 33% and 46% with increasing the beam effective depth, 26% and 33% for $S^*-2$ specimens (d/s=1.5) and 16% and 20% for $S^*-3$ specimens (d/s=2.0) respectively. As the shear reinforcement ratio increases, the decrease range in shear strength decreases. In other words, this means that as the shear reinforcement ratio increases, the size effect of concrete decreases. In the S1 series, the shear strength increased by 39% and 41% as the shear reinforcement ratio increased, 54% and 76% in the S2 series and 66% and 100% in the S3 series, respectively. As the effective depth of beam increases, the increase range of shear strength increases. This means that the effect of shear reinforcement increases as the beam effective depth increases. As a result of comparing experimental values with theoretical values by standard equation and proposed equation, the ratio by Zsutty and Bazant's equation is 1.30 ~ 1.36 and the ratio by KBC1 and KBC2 is 1.55~.163, respectively. Therefore, Zsutty and Bazant's proposed equation is more likely to reflect the experimental data. The current standard for shear reinforcement ratio (i.e., $S_{max}=d/2$) is expected to be somewhat relaxed because the ratio of experimental values to theoretical values was found to be 1.01 ~ 1.44 for most specimens.