• Title/Summary/Keyword: SC: Synchronous Condenser

Search Result 2, Processing Time 0.018 seconds

Feasibility Analysis of STATCOM Application for Jeiu-Haenam HVDC System (제주-해남 HVDC 시스템에 STASTCOM 적용 타당성 분석)

  • Baek Seung-Taek;Choo Won-Gvo;Han Byung-Moon;Jang Gil-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.8
    • /
    • pp.401-409
    • /
    • 2005
  • This paper describes a feasibility analysis result of STATCOM application for the Jeju-Haenam HVDC system. The Jeju-Haenam HVDC system is one of the typical HVDC system interconnected with the low short-circuit-ratio AC system, which is vulnerable to the commutation failure due to the AC voltage variation. STATCOM has been considered as an effective reactive-power compensator to increase short-circuit-ratio of the interconnected AC system. In this study, a simulation model of Jeju-Hacnam HVDC system with STATCOM was developed using PSCAD/EMTDC. The developed simulation model was utilized to analyze the dynamic performance analysis of Jeju-Haenam HVDC system with STATCOM. The analysis results show that STATCOM can improve the dynamic performance of Jeju-Haenam HVDC system, such as load-change recovery performance and fault recovery performance.

Frequency Stability Enhancement of Power System using BESS (BESS를 활용한 전력계통 주파수 안정도 향상)

  • Yoo, Seong-Soo;Kwak, Eun-Sup;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.595-606
    • /
    • 2022
  • Korea has the characteristics of traditional power system such as large-scale power generation and large-scale power transmission systems, including 20 GW large-scale power generation complexes in several regions with unit generator capacity exceeding 1.4 GW, 2-3 ultra-high-voltage transmission lines that transport power from large-scale power generation complexes, and 6 ultra-high-voltage transmission lines that transport power from non-metropolitan areas to the metropolitan area. Due to the characteristics of the power system, the penetration level for renewable energy is low, but due to frequency stability issue, some generators are reducing the output of generators. In the future, the issue of maintaining the stability of the power system is expected to emerge as the most important issue in accordance with the policy of expanding renewable energy. When non-inertial inverter-based renewable energy, such as solar and wind power, surges rapidly, the means to improve the power system stability in an independent system is to install a natural inertial resource synchronous condenser (SC) and a virtual inertial resource BESS in the system. In this study, we analyzed the effect of renewable energy on power system stability and the BESS effect to maintain the minimum frequency through a power system simulation. It was confirmed that the BESS effect according to the power generation constraint capacity reached a maximum of 122.81 %.