• Title/Summary/Keyword: SBR rubber compound

Search Result 52, Processing Time 0.016 seconds

A Study in Application and Manufacture Technique of Cold-Mix Cold-Laid Type Asphalt Concrete Using of Polymer Modified Asphal (개질 아스팔트를 이용한 상온아스콘 제조 및 실용화 연구)

  • 김영근;남궁연;박유신
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.627-634
    • /
    • 1997
  • This is the Study on Application and Manufacture Technique of Cold-Mix, Cold-Laid type Asphalt Concrete using of Polymer modified asphalt the could be constructed easily and economically on damaged road repaireless for seasons. The modified materials for this study are SBS(Styrene-Butadiene-Styrene). SBR (Styrene-Butadiene-Rubber) and PUR(Polyurethane). The Marshall stability and the value of flow and resistance in water stability degree according to the alternation types and weight percent of modified materials were compared and evaluated on this study. The results of the study show that PUR modified asphalt have improvement of over 150% Marshall stability in AI MS-14 standard and they are evaluated to have the easiness of storage and better working efficiency compared with other types of modified asphalt compound.

  • PDF

Characteristics in Size Distributions and Morphologies of Wear Particles Depending on Types of Abrasion Testers

  • Eunji Chae;Seong Ryong Yang;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.2
    • /
    • pp.87-94
    • /
    • 2023
  • Abrasion tests of an SBR compound were conducted using four different types of abrasion testers (cut and chip, Lambourn, DIN, and LAT100). The abrasion test results were analyzed in terms of size distributions and morphologies of the wear particles. Most wear particles were larger than 1000 ㎛. The wear particle size distributions tended to decrease as the particle size decreased. Except for the Lambourn abrasion test, the wear particles smaller than 212 ㎛ were rarely generated by the other three abrasion tests, implying that small wear particles were produced through friction by introducing talc powder. Shapes of the wear particles varied depending on the abrasion testers. The wear particles generated from the Lambourn abrasion tester had stick-like shapes. The cut and chip abrasion test showed a clear abrasion pattern, but the DIN abrasion test did not show any specific abrasion pattern. The Lambourn and LAT100 abrasion tests showed irregular abrasion patterns.