• Title/Summary/Keyword: SBR latex

Search Result 56, Processing Time 0.022 seconds

Development and Evaluation of Polymer-Modified Asphalt Emulsions Used for Tack Coats (택코트용 폴리머 개질 유화아스팔트 개발 및 성능 평가)

  • Kim, Yeong Min;Im, Jeong Hyuk;Hwang, Sung Do
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.39-46
    • /
    • 2015
  • PURPOSES: The objectives of this study were to develop a new polymer-modified emulsion for application to tack coats and to evaluate its properties by comparing it with other types of asphalt emulsions, with the goal of providing an enhanced tack coat material for use in construction. METHODS: Modified asphalt binders were developed from using SBS and SBR latex in the laboratory, and their fundamental properties, such as their penetration index and PG grade, were evaluated. Based on the properties, a new tack coat material was developed. To evaluate the newly developed asphalt emulsion, the bonding strength between the two layers of HMA was measured by applying a uniaxial tensile test and shear test. For the tests, a total of four different conditions were applied to the specimens, including the developed asphalt emulsion, latex modified asphalt emulsion, conventional asphalt emulsion, and non-tack coating. RESULTS AND CONCLUSIONS: Overall, the developed asphalt emulsion exhibits the best bonding strength behavior among all of the three types. Also, the two types of polymer-modified emulsions were found to be better for application for use as a tack coat than a conventional emulsion. Especially, at a high temperature ($50^{\circ}C$), the conventional asphalt emulsion no longer acts as a tack coating material. Therefore, the polymer-modified emulsion should be considered for application to tack coat construction during the summer.

Strength Properties of Polymer-Modified Repair Mortars According to Curing Conditions and Repair Methods (양생조건 및 보수방법에 따른 폴리머시멘트모르타르의 강도 성상)

  • Kim, Wan-Ki;Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.457-465
    • /
    • 2007
  • In this paper, polymer-modified repair materials using polymer dispersions with six repair methods are prepared with various polymer-cement ratios, and tested for compressive and flexural strengths through each curing condition such as dry cure, water cure, and freezing and thawing cyclic action. And, the adhesive interface between the polymer-modified mortar and mortar substrate is observed by a scanning electron microscope. From the test results, the compressive and flexural strengths of cement mortar repaired by polymer-modified mortar are improved with a rise in the polymer-cement ratio regardless of the type of polymer and curing conditions. Such an improvement in the strengths of polymer-modified repair materials to ordinary cement mortar is explained by the high adhesion of polymer-modified mortar. Strength reduction of polymer-modified repair materials after freezing and thawing cyclic actions is recognized, but it is lower than that of unmodified mortar. Especially, cement mortar repaired by polymer-modified mortar with a St/BA emulsion has good strength properties compared with those of SBR latex and PA emulsion. Accordingly, it is judged that polymer-modified mortars with a St/BA emulsion are possible to use as repair materials to ordinary cement mortar and concrete.

Evaluation of Hot Mix Asphalt Properties using Complex Modifiers (복합개질제를 이용한 아스팔트 혼합물의 물성 평가)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.146-152
    • /
    • 2018
  • In this study, to improve the performance of asphalt mixtures for plastic deformation occurring mainly in Korea, complex modifiers were prepared by mixing powders and liquid type modifiers. The main constituents were powdery diatomaceous earth, mica and carbon black, and liquid type solid 70% SBR latex. The tensile strength ratios for the two asphalt mixtures used in the test were above 0.80 for the Ministry of Land Transportation (2017) asphalt mixture production and construction guidelines. The effects of increasing the tensile strength in the dry state was more than 14% when the composite modifier was added. The deformation rate per minute by the wheel tracking test load was an average of 0.07 to 0.147 for each mixture. The strain rate per minute was improved by the modifier, and the dynamic stability was improved by almost 100% from 295 to 590. In addition, the final settling was reduced from 11.38 mm to 9.57 mm. A plastic deformation test using the triaxial compression test showed that the amount of deformation entering the plastic deformation failure zone at the end of the second stage section and in the third stage plastic deformation section was 1.76 mm for the conventional mixture and 1.50 mm for the complex modifier mixture. The average slope of the complex modifier asphalt mixture mixed with the multi-functional modifier was 0.005 mm/sec. The plastic deformation rate is relatively small in the section where the road pavement exhibits stable common performance, i.e. the traffic load.

An Experimental Study on the Mechanical Properties of Fiber Reinforced Fly Ash.Lime.Gypsum Composites (섬유보강 플라이애쉬.석고.복합체의 역학적특성에 관한 실험적 연구)

  • 박승범
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.4
    • /
    • pp.145-155
    • /
    • 1993
  • The results of an experimental study on the manufacture and the mechanical properties of fiber reinforced fly ash$\cdot$lime$\cdot$gypsum composites are presented in this paper. 'The composites using fly ash, lime, and gypsum were prepared with various fibers (PAN-derived and Pitch-derived carbon fiber, alkali-resistance glass fiber) and a small amount of polymer emulsion-styrene butadiene rubber latex (SBR). As the test results show, the manufacturing process technology of fly ash$\cdot$lime$\cdot$gypsum composites was developed and its optimum mix proportions were successfully proposed. And the flexural strength and toughness of fiber reinforced fly ash$\cdot$lime $\cdot$gypsum composites were increased remarkably by fiber contents, but the compressive strength of the composites were influenced by the kinds fiber more than by the fiber contents. Also, the addition of a polymer emulsion to the composites decreased the bulk specific gravity, but the compressive and flexural strength, and the toughness of the composites were not influenced by it, but were considerably improved by increasing fiber contents.

Exposure Characteristics of 1,3-Butadiene Exposed Workers (1,3-부타디엔 제조 및 취급 근로자의 노출특성에 관한 연구)

  • Choi, Ho Chun;An, Sun Hee;Lee, Hyun Seok;Park, Young Wook;Kim, Kyung Soon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.4
    • /
    • pp.321-327
    • /
    • 2009
  • 1,3-butadiene is classified as suspected human carcinogen, group A2(American Conference of Governmental Industrial Hygienists, ACGIH). In Korea, 1,3-butadiene has been used as a raw material; monomer, homopolymer, polybutadiene latex, acrylonitrile-butadiene-styrene(ABS) and styrene-butadiene rubber(SBR), in the petrochemistry and precision chemistry industry. As petrochemistry industry in Korea has been developed, the potential exposure possibility of 1,3-butadiene to workers can be increased. Therefore the purpose of this study is to evaluate airborne 1,3-butadiene concentration and workers' exposure levels in the workplace using 1,3-butadiene. Air samples were collected with 4-tert-butyl catechol(TBC) charcoal tube(100 mg/50 mg) and were analyzed by gas chromatograph/flame ionization detector(GC/FID) according to the Choi's method(2002). Geometric mean (GM) and arithmetic mean (AM) of total 59 workers' exposure concentrations to airborne 1.3-butadiene were 0.042 ppm and 1.51 ppm, respectively. Although most samples were lower than 1ppm, 2 samples(21.5ppm and 33.1ppm as 8hr-TWA) were exceeded the Korean standard(2ppm) over 10 times at the repair process in synthetic rubber and resin manufacture industry. 14 samples(41%) of total 34 short-term air samples were exceeded the Korean standard(10ppm as STEL) of Ministry Labor. 1,3-butadiene concentration(GM) in the synthetic rubber and resin manufacture industry(7.87ppm) was significantly higher than that in the monomer manufacure industry (0.35ppm)(p<0.05). Also in the sampling and repair process, each GM(range) was 1.39ppm(N.D.-469.6ppm) and 7.85ppm(N.D.-410.2ppm). In conclusion, it depends on the industry and process, 1,3-butadiene can be exposed to workers as high concentration for short-term.

Engineering Character of Ultra Rapid Hardening Concrete-Polymer Composite using CAC and Gypsum Mixed CAC (CAC 및 석고혼입 CAC를 사용한 초속경 콘크리트-폴리머 복합체의 공학적 특성)

  • Koo, Ja Sul;Yoo, Seung Yeup;Kim, Jin Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.97-105
    • /
    • 2016
  • Recently, application case of the ultra rapid hardening concrete-polymer composite(URHCPC) are increasing to repair for the deterioration of pavement. But it is a major disadvantage that the main material is expensive and has environmental load. For these reasons, the development of the economic, eco-friendly materials is needed. Calcium Aluminate Composite (CAC), produced by rapid cooling of atomizing method with molten ladle furnace slag, is a material capable of improving the economic feasibility and reducing the environmental load of URHCPC. In this paper, the properties of CAC and gypsum mixed CAC (GC) as alternative materials of RSC according to the types of polymer dispersion were studied. The results were as follows; compressive strength, tensile strength, flexural strength, bonding strength and modulus of elasticity of the composites using CAC or GC showed higher values than those of plain proportion in 3 hour. In later age, they were at the same level as the general proportions. URHCPC using BPD as polymer dispersion had superior strength properties generally. But modulus of elasticity was the same level as the case of using a SBR latex. According to these results, CAC or GC can partially substituted for RSC to product the URHCPC. When URHCPC uses the BPD as the polymer dispersion, it can be improved performance.