• Title/Summary/Keyword: SATELLITE IMAGE

Search Result 2,132, Processing Time 0.032 seconds

Evaluation of Geometric Modeling for KOMPSAT-1 EOC Imagery Using Ephemeris Data

  • Sohn, Hong-Gyoo;Yoo, Hwan-Hee;Kim, Seong-Sam
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.218-228
    • /
    • 2004
  • Using stereo images with ephemeris data from the Korea Multi-Purpose Satellite-1 electro-optical camera (KOMPSAT-1 EOC), we performed geometric modeling for three-dimensional (3-D) positioning and evaluated its accuracy. In the geometric modeling procedures, we used ephemeris data included in the image header file to calculate the orbital parameters, sensor attitudes, and satellite position. An inconsistency between the time information of the ephemeris data and that of the center of the image frame was found, which caused a significant offset in satellite position. This time inconsistency was successfully adjusted. We modeled the actual satellite positions of the left and right images using only two ground control points and then achieved 3-D positioning using the KOMPSAT-1 EOC stereo images. The results show that the positioning accuracy was about 12-17 m root mean square error (RMSE) when 6.6 m resolution EOC stereo images were used along with the ephemeris data and only two ground control points (GCPs). If more accurate ephemeris data are provided in the near future, then a more accurate 3-D positioning will also be realized using only the EOC stereo images with ephemeris data and without the need for any GCPs.

  • PDF

Road Centerline Tracking From High Resolution Satellite Imagery By Least Squares Templates Matching

  • Park, Seung-Ran;Kim, Tae-Jung;Jeong, Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.34-39
    • /
    • 2002
  • Road information is very important for topographic mapping, transportation application, urban planning and other related application fields. Therefore, automatic detection of road networks from spatial imagery, such as aerial photos and satellite imagery can play a central role in road information acquisition. In this paper, we use least squares correlation matching alone for road center tracking and show that it works. We assumed that (bright) road centerlines would be visible in the image. We further assumed that within a same road segment, there would be only small differences in brightness values. This algorithm works by defining a template around a user-given input point, which shall lie on a road centerline, and then by matching the template against the image along the orientation of the road under consideration. Once matching succeeds, new match proceeds by shifting a matched target window further along road orientation at the target window. By repeating the process above, we obtain a series of points, which lie on a road centerline successively. A 1m resolution IKONOS images over Seoul and Daejeon were used for tests. The results showed that this algorithm could extract road centerlines in any orientation and help in fast and exact he ad-up digitization/vectorization of cartographic images.

  • PDF

Estimation of Sea Surface Current Vector based on Satellite Ocean Color Image around the Korean Marginal Sea

  • Kim, Eung;Ro, Young-Jae;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.816-819
    • /
    • 2006
  • One of the most difficult parameters to measure in the sea is current speed and direction. Recently, efforts are being made to estimate the ocean current vectors by utilizing sequential satellite imageries. In this study, we attempted to estimated sea surface current vector (sscv) by using satellite ocean color imageries of SeaWifs around the Korean Peninsula. This ocean color image data has 1-day sampling interval and spatial resolution of 1x1 km. Maximum cross-correlation method is employed which is aimed to detect similar patterns between sequential images. The estimated current vectors are compared to the surface geostrophic current vectors obtained from altimeter of sea level height data. In utilizing the color imagery data, some limitations and drawbacks exist so that in warm water region where phytoplankton concentration is relatively lower than in cold water region, estimation of sscv is poor and unreliable. On the other hand, two current vector fields agree reasonably well in the Korean South Sea region where high concentration of chlorophyll-a and weak tide is observed. In the future, with ocean color images of shorter sampling interval by COMS satellite, the algorithm and methodology developed in the study would be useful in providing the information for the ocean current around Korean Peninsula.

  • PDF

Foreign Development Status and Applications of Infrared Imaging Satellite (해외 적외선 관측위성 현황 및 영상활용)

  • Kim, Eung-Hyun;Im, Jung-Heum;Kim, Hee-Seop;Kim, Gyu-Sun
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.51-59
    • /
    • 2008
  • While the infrared imaging satellites with the several type were developed and operated in the foreign countries, we do not have the domestic infrared imaging satellite up to now. In the paper, the general characteristics of infrared and the applications of infrared image were introduced. Also the oversea development status of the infrared imaging satellite was surveyed and introduced to this paper. According to foreign status, the infrared image is utilized in various application including the forest fire monitoring, the volcano activity research, sea surface temperature measurement, land surface temperature calculation, the climate change research, and the environment monitoring. According to these trend the development of the domestic infrared imaging satellite in low earth orbit was required.

  • PDF

Application of XML to Develop GUI within Satellite Imageries Search System (위성 영상 검색시스템의 GUI 개발을 위한 XML 적용)

  • Bu, Ki-Dong;Lee, Young-Ju
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.4
    • /
    • pp.65-74
    • /
    • 2002
  • The purpose of this study is to develop an XML based GUI that can search for satellite image information which is converted to XML data format and stored in the database server on the web, and modify and reuse data. In order to implement these functions efficiently, we used a DOM interface of XML that increases the efficiency of accessing the document structure. We used HTML and Java script programming to facilitate this interface. The system was applied to the management system of satellite images in the Research Institute of SFC at Keio University. Our results confirmed the technical functionalities.

  • PDF

GOES-9 위성 영상을 이용한 특정 궤도 지점에서의 지구 투영

  • Kang, Chi-Ho;Ahn, Sang-Il;Koo, In-Hoi
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.267-271
    • /
    • 2004
  • The satellite in the geostationary orbit rotates around Earth center with the same angular rate as the Earth. So, the Earth can be observed with sequential time series. GOES(Geostationary Operational Environmental Satellites)-9 is a meteorological satellite, which is now located at 155ㆁE geostationary orbit location in order to monitor East-Asia meteorological environment including Korean Peninsular. Every meteorological information is acquired from GOES-9 with the period of about 1 hour. COMS(Communication, Ocean and Meteorological Satellite) has been developed by KARI(Korea Aerospace Research Institute) since 2003 and will be launched at 2008. COMS will be located at different orbit location compared to GOES-9. In this study, a simulated COMS image which is the perspective from different geostationary orbit location is generated using an GOES-9 image.

  • PDF

Study of NOAA APT Groundstation and Small Satellite Image Processing System (NOAA 위성의 APT 수신시스템의 개발과 구름사진 재현에 관한 연구)

  • 민승현
    • Korean Journal of Remote Sensing
    • /
    • v.7 no.2
    • /
    • pp.113-130
    • /
    • 1991
  • Meterological satellites have taken their important place as astandard observing platform from which to measure weather. Specially, they provide a useful information about the weather of wide dessert or sea. This information is really helpful to understand the field of satellite meteorology. Several leading countries, for example, USA, EC, Russia, and Japan, launch two different satellites, both Geostationary and Polar orbiting satellite system. Hewever no technology is developed to our own groundstation for NOAA satellite. The purpose of this paper is to build a home-made NOAA APT groundstation and image processing system to supply this system to secondary school or college.

GOES-9 GVAR Imager Processing System Development by KARI

  • Ahn, S.I.;Koo, I.H.;Yang, H.M.;Hyun, D.H.;Park, D.J.;Kang, C.H.;Kim, D.S.;Choi, H.J.;Paik, H.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.31-33
    • /
    • 2003
  • Recently, KARI developed in-house meteorological sensor processing system named MESIS for GOES GVAR 5-CH Imager for better KOMPSAT EOC mission operation. MESIS consists of antenna system, receiver, serial telemetry card, processing and mapping software, and 2 NT PC systems. This paper shows system requirement, system design, characteristic and test results of processing system. System operation concept and sample image are also provided. Implemented system was proven to be fully operational through lots of operations covering from RF signal reception to web publishing.

  • PDF

INTRODUCTION OF THE SIMC PROJECT

  • Chae, Gee-Ju;Cho, Seong-Ik;Park, Jong-Hyun;Jo, Kwan-Bok
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.356-359
    • /
    • 2006
  • The high prices and lack of information for satellite images prevent researchers from studying remote sensing and most non-professional people can't have the simple and easy solutions for the manipulation of satellite images. 'Satellite Imagery Information Management Center'(SIMC) project which is promoted by ETRI (Electronics and Telecommunications Research Institute) from 2002 to 2005 in Korea have the purpose to provide the satellite images freely to the public domain and the solutions for the above mentioned problems. Our project have the following five systems; Data Acquisition System, Data Preservation System, Integrated Solution System, Technology Development System, Operation Plan System. Data Acquisition System collects the satellite images such as LANDSAT, IKONOS, etc. Data Preservation System consists of database which registers the diverse satellite images. Integrated Solution System gives the user of public domain for the web service which search, order and transfer the satellite images. Technology Development System has the many processing technologies for the satellite images. Finally, the Operation Plan system has the role to plan the future of our SIMC project. In this paper, we will give the result of SIMC Project for each five systems during the fast four years from 2002 to 2005.

  • PDF

Comparative Study on Hyperspectral and Satellite Image for the Estimation of Chlorophyll a Concentration on Coastal Areas (연안 해역의 클로로필 농도 추정을 위한 초분광 및 위성 클로로필 영상 비교 연구)

  • Shin, Jisun;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.309-323
    • /
    • 2020
  • Estimation of chlorophyll a concentration (CHL) on coastal areas using remote sensing has been mostly performed through multi-spectral satellite image analysis. Recently, various studies using hyperspectral imagery have been attempted. In particular, airborne hyperspectral imagery is composed of hundreds of bands with a narrow band width and high spatial resolution, and thus may be more effective in coastal areas than estimation of CHL through conventional satellite image. In this study, comparative analysis of hyperspectral and satellite-based CHL images was performed to estimate CHL in coastal areas. As a result of analyzing CHL and seawater spectrum data obtained by field survey conducted on the south coast of Korea, the seawater spectrum with high CHL peaked near the wavelength bands of 570 and 680 nm. Using this spectral feature, a new band ratio of 570 / 490 nm for estimating CHL was proposed. Through regression analysis between band ratio and the measured CHL were generated new CHL empirical formula. Validation of new empirical formula using the measured CHL showed valid results, with R2 of 0.70, RMSE of 2.43 mg m-3, and mean bias of 3.46 mg m-3. As a result of applying the new empirical formula to hyperspectral and satellite images, the average RMSE between hyperspectral imagery and the measured CHL was 0.12 mg m-3, making it possible to estimate CHL with higher accuracy than multi-spectral satellite images. Through these results, it is expected that it is possible to provide more accurate and precise spatial distribution information of CHL in coastal areas by utilizing hyperspectral imagery.