• Title/Summary/Keyword: SASE (seed accumulating sequential estimation)

Search Result 2, Processing Time 0.014 seconds

Performance Analysis of Sequential Estimation Schemes for Fast Acquisition of Direct Sequence Spread Spectrum Systems (직접 수열 확산 대역 시스템의 고속 부호 획득을 위한 순차 추정 기법들의 성능 분석)

  • Lee, Seong Ro;Chae, Keunhong;Yoon, Seokho;Jeong, Min-A
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.8
    • /
    • pp.467-473
    • /
    • 2014
  • In the direct sequence spread spectrum system, the correct synchronization is very important; hence, several acquisition schemes based on the sequential estimation have been developed. Typically, the rapid acquisition sequential estimation (RASE) scheme, the seed accumulating sequential estimation (SASE) scheme, the recursive soft sequential estimation (RSSE) scheme have been developed for the correct acquisition. However, the objective performance comparison and analysis between former estimation schemes have not been performed so far. In this paper, we compare and analyze the performance of the above sequential estimation schemes by simulating the correct chip probability and the mean acquisition time (MAT).

PN Code Acquisition at Low Signal-to-Noise Ratio Based on Seed Accumulating Sequential Estimation (시드 누적 순차적 추정 기법을 이용한 낮은 신호대잡음비 환경에서의 의사 잡음 부호 획득)

  • 윤석호;김선용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9A
    • /
    • pp.678-683
    • /
    • 2003
  • The pseudo-noise (PN) code acquisition based on the sequential estimation (SE) proposed by Ward performs well only at relatively high chip signal-to-noise ratios (SNRs). In this paper, a seed accumulating sequential estimation (SASE) method and a PN code acquisition system based on it are proposed, which perform well at low chip SNR (of practical interest) also. Then, the mean acquisition time performance of the proposed system is investigated. Numerical results show that the system based on the SASE performs dramatically better than that based on the SE at low chip SNR, and the improvement becomes larger as the period of PN code increases.