• Title/Summary/Keyword: SARS-CoV-2 antibody titer

Search Result 4, Processing Time 0.017 seconds

Changes in SARS-CoV-2 antibody titers 6 months after the booster dose of BNT162b2 COVID-19 vaccine among health care workers

  • Takeshi Mochizuki;Takaki Hori;Koichiro Yano;Katsunori Ikari;Ken Okazaki
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.2
    • /
    • pp.116-120
    • /
    • 2023
  • Purpose: In Japan, the data on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody titers after the booster dose of the coronavirus disease 2019 (COVID-19) vaccine are insufficient. The aim of this study is to evaluate changes in SARS-CoV-2 antibody titers before, 1, 3, and 6 months after the booster dose of the BNT162b2 COVID-19 vaccine among health care workers. Materials and Methods: A total of 268 participants who received the booster dose of the BNT162b2 vaccine were analyzed. SARS-CoV-2 antibody titers were measured before (baseline) and at 1, 3, and 6 months after the booster dose. Factors associated with changes in SARS-CoV-2 antibody titers at 1, 3, and 6 months were analyzed. Cutoff values at baseline were calculated to prevent infection of the omicron variant of COVID-19. Results: The SARS-CoV-2 antibody titers at baseline, and 1, 3, and 6 months were 1,018.3 AU/mL, 21,396.5 AU/mL, 13,704.6 AU/mL, and 8,155.6 AU/mL, respectively. Factors associated with changes in SARS-CoV-2 antibody titers at 1 month were age and SARS-CoV-2 antibody titers at baseline, whereas changes in SARS-CoV-2 antibody titers at 3 and 6 months were associated with the SARS-CoV-2 antibody titers at 1 month. The cutoff values of the SARS-CoV-2 antibody titers at baseline were 515.4 AU/mL and 13,602.7 AU/mL at baseline and 1 month after the booster dose, respectively. Conclusion: This study showed that SARS-CoV-2 antibody titers increase rapidly at 1 month after the booster dose of the BNT162b2 vaccine and begin to decrease from 1 to 6 months. Hence, another booster may be needed as soon as possible to prevent infection.

Expression and Immunogenicity of SARS-CoV-2 Virus-Like Particles based on Recombinant Truncated HEV-3 ORF2 Capsid Protein

  • Zhou, Yong-Fei;Nie, Jiao-Jiao;Shi, Chao;Ning, Ke;Cao, Yu-Feng;Xie, Yanbo;Xiang, Hongyu;Xie, Qiuhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1335-1343
    • /
    • 2022
  • COVID-19 is an emerging disease that poses a severe threat to global public health. As such, there is an urgent demand for vaccines against SARS-CoV-2, the virus that causes COVID-19. Here, we describe a virus-like nanoparticle candidate vaccine against SARS-CoV-2 produced by an E. coli expression system. The fusion protein of a truncated ORF2-encoded protein of aa 439~608 (p170) from hepatitis E virus CCJD-517 and the receptor-binding domain of the spike protein from SARS-CoV-2 were expressed, purified and characterized. The antigenicity and immunogenicity of p170-RBD were evaluated in vitro and in Kunming mice. Our investigation revealed that p170-RBD self-assembled into approximately 24 nm virus-like particles, which could bind to serum from vaccinated people (p < 0.001) and receptors on cells. Immunization with p170-RBD induced the titer of IgG antibody vaccine increased from 14 days post-immunization and was significantly enhanced after a booster immunization at 28 dpi, ultimately reaching a peak level on 42 dpi with a titer of 4.97 log10. Pseudovirus neutralization tests showed that the candidate vaccine induced a strong neutralizing antibody response in mice. In this research, we demonstrated that p170-RBD possesses strong antigenicity and immunogenicity and could be a potential candidate for use in future SARS-CoV-2 vaccine development.

Anti-SARS-CoV-2 receptor binding domain antibodies after the second dose of Sinovac and AstraZeneca vaccination

  • Marisca Evalina Gondokesumo;Anita Purnamayanti;Puri Safitri Hanum;Winnie Nirmala Santosa;Ardyan Prima Wardhana;Christina Avanti
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.3
    • /
    • pp.224-231
    • /
    • 2023
  • Purpose: The Sinovac and AstraZeneca vaccines are the primary coronavirus disease 2019 vaccines in Indonesia. Antibody levels in vaccine-injected individuals will decline substantially over time, but data supporting the duration of such responses are limited. Therefore, this study aims to quantitatively evaluate antibody responses resulting from the completion of Sinovac and AstraZeneca administration in Indonesian adults. Materials and Methods: Participants were divided into two groups based on their vaccine type. Both groups were then assessed on the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (anti-SRBD) concentrations. The anti-SRBD level was measured using Elecsys anti-SARS-CoV-2 S assay and analyzed every month until 3 months after the second vaccination. Results: The results presented significant differences (p=0.000) in immunoglobulin G (IgG) titers among the vaccines' measurement duration, where all samples observed a decrease in IgG titers over time. The mean titer levels of anti-SRBD IgG in the group given Sinovac were high in the first month after vaccination and decreased by 55.7% in 3 months. AstraZeneca showed lesser immune response with a slower decline rate. Adverse effects following immunization (AEFI) showed that systemic reactions are the most reported in both vaccines, with a higher percentage in the second dose of AstraZeneca type vaccines. Conclusion: Sinovac induced more significant titers of anti-SRBD IgG 1 month after the second dose but generated fewer AEFIs. In contrast, AstraZeneca generated more AEFIs, in mild to moderate severity, but provided lower levels of anti-SRBD IgG.

Antibody Response Induced by Two Doses of ChAdOx1 nCoV-19, mRNA-1273, or BNT162b2 in Liver Transplant Recipients

  • So Yun Lim;Young-In Yoon;Ji Yeun Kim;Eunyoung Tak;Gi-Won Song;Sung-Han Kim;Sung-Gyu Lee
    • IMMUNE NETWORK
    • /
    • v.22 no.3
    • /
    • pp.24.1-24.12
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19) vaccination in immunocompromised, especially transplant recipients, may induce a weaker immune response. But there are limited data on the immune response after COVID-19 vaccination in liver transplant (LT) recipients, especially on the comparison of Ab responses after different vaccine platforms between mRNA and adenoviral vector vaccines. Thus, we conducted a prospective study on LT recipients who received two doses of the ChAdOx1 nCoV-19 (ChAdOx1), mRNA-1273, or BNT162b2 vaccines compared with healthy healthcare workers (HCWs). SARS-CoV-2 S1-specific IgG Ab titers were measured using ELISA. Overall, 89 LT recipients (ChAdOx1, n=16 [18%]) or mRNA vaccines (mRNA-1273 vaccine, n=23 [26%]; BNT162b2 vaccine, n=50 [56%]) received 3 different vaccines. Of them, 16 (18%) had a positive Ab response after one dose of COVID-19 vaccine and 62 (73%) after 2 doses. However, the median Ab titer after two doses of mRNA vaccines was significantly higher (44.6 IU/ml) than after two doses of ChAdOx1 (19.2 IU/ml, p=0.04). The longer time interval from transplantation was significantly associated with high Ab titers after two doses of vaccine (p=0.003). However, mycophenolic acid use was not associated with Ab titers (p=0.53). In conclusion, about 3-quarters of LT recipients had a positive Ab response after 2 doses of vaccine, and the mRNA vaccines induced higher Ab responses than the ChAdOx1 vaccine.