• Title/Summary/Keyword: SAR Image

Search Result 443, Processing Time 0.025 seconds

Automatic Registration Between KOMPSAT-2 and TerraSAR-X Images (KOMPSAT-2 영상과 TerraSAR-X 영상 간 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Chae, Tae-Byeong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.667-675
    • /
    • 2011
  • In this paper, we propose an automatic image-to-image registration between high resolution multi-sensor images. To do this, TerraSAR-X image was shifted according to the initial translation differences of the x and y directions between images estimated using Mutual Information method. After that, the Canny edge operator was applied to both images to extract linear features. These features were used to design a cost function that finds matching points based on the similarities of their locations and gradient orientations. For extracting large number of evenly distributed matching points, only one point within each regular grid constructed throughout the image was extracted to the final matching point pair. The model, which combined the piecewise linear function with the global affine transformation, was applied to increase the accuracy of the geometric correction, and the proposed method showed RMSE lower than 5m in all study sites.

Extraction of Ground Control Points from TerraSAR-X Data

  • Park, Jeong-Won;Hong, Sang-Hoon;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.328-331
    • /
    • 2008
  • It is possible to extract qualified ground control points (GCPs) solely from SAR data without published maps. TerraSAR-X is now in orbit and provides valuable data that have one of the highest spatial resolutions among civilian SAR systems. In this study, a sophisticated method for GCP coordinate extraction from TerraSAR-X stripmap mode data with a 3 m resolution was tested and the quality of the extracted GCPs was evaluated. An inverse-geolocation algorithm was applied to obtain GCPs from TerraSAR-X data. SRTM 90m DEM was used as an auxiliary data set for azimuth time correction of the SAR data. Mean values of the distance errors were 0.11 m and -3.96 m with standard deviations of 6.52 m and 5.11 m in easting and northing, respectively. The result is one of the best among GCPs possibly extracted from current civilian remote sensing systems. The extracted GCPs were used for geo-rectification of an IKONOS image, which demonstrated the applicability of the GCPs to geo-rectification of high resolution optic image. The method used in this study can be applied to KOMPSAT-5 for geo-rectification of high-resolution optic images acquired by KOMPSAT-2 or follow-up missions.

  • PDF

A Study on Parallel Performance Optimization Method for Acceleration of High Resolution SAR Image Processing (고해상도 SAR 영상처리 고속화를 위한 병렬 성능 최적화 기법 연구)

  • Lee, Kyu Beom;Kim, Gyu Bin;An, Sol Bo Reum;Cho, Jin Yeon;Lim, Byoung-Gyun;Kim, Dong-Hyun;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.503-512
    • /
    • 2018
  • SAR(Synthetic Aperture Radar) is a technology to acquire images by processing signals obtained from radar, and there is an increasing demand for utilization of high-resolution SAR images. In this paper, for high-speed processing of high-resolution SAR image data, a study for SAR image processing algorithms to achieve optimal performance in multi-core based computer architecture is performed. The performance deterioration due to a large amount of input/output data for high resolution images is reduced by maximizing the memory utilization, and the parallelization ratio of the code is increased by using dynamic scheduling and nested parallelism of OpenMP. As a result, not only the total computation time is reduced, but also the upper bound of parallel performance is increased and the actual parallel performance on a multi-core system with 10 cores is improved by more than 8 times. The result of this study is expected to be used effectively in the development of high-resolution SAR image processing software for multi-core systems with large memory.

A Study on the Azimuth Direction Extrapolation for SAR Image Using ω-κ Algorithm (ω-κ 알고리즘을 이용한 SAR 영상의 방위각 방향 외삽 기법 연구)

  • Park, Se-Hoon;Choi, In-Sik;Cho, Byung-Lae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.1014-1017
    • /
    • 2012
  • In this paper, we introduce a method which enhances the azimuth resolution to obtain the high-resolution SAR image. We used ${\omega}-k$ algorithm to obtain the SAR image and extrapolation using auto-regressive(AR) method to enhance the azimuth resolution in the 2-D frequency domain. The AR method is a linear prediction model-based extrapolation technique. In the result, we showed the performance comparison with respect to the target range and the prediction order of Burg algorithm which is one of AR method.

Characteristics of the SAR Images and Interferometric Phase over Oyster Sea Farming Site (굴 양식장에서의 SAR 영상 및 간섭위상 특성)

  • 김상완;이창욱;원중선
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.4
    • /
    • pp.209-220
    • /
    • 2002
  • We carried out studies on SAR image intensity and interferometric phase over oyster sea farms. Strong backscattering was observed in amplitude images, and that was considered as a radar signal double bouncing from horizontal bars. These sea farming structures are not visible in satellite optical images except IKONOS image, so that it demonstrates the value of radar remote sensing as an effective tool in support of sea farm detection. The intensity of the image is sensitive to system parameters including wavelength, polarization, and look direction, but does not correlate to tide height. We found that the strongest backscattering can be obtained by L-band HH-polarization with a look direction perpendicular to the horizontal bar. We also succeeded in generating 21 coherent JERS-1 SAR interferometric pairs over the oyster farms. The general trend of the fringe rate of the interferometric phases appeared to be governed by altitude of ambiguity. The general trend was modeled by an inverse function and removed to have a residual phase. The residual phase showed a linear relation with the tide height. The results demonstrate for the first time that SAR can possibly be used to estimate sea level. However, the r.m.s. error of a regression line is 11.7 cm, and that is so far too large to make reliable assessments of sea level in practical applications. Further studies is required to improve the accuracy specifically using multi-polarization SAR data.

Performance Analysis of the reconstruction Algorithms in the Stripmap-mode SAR (Stripmap-mode SAR에서의 영상복원 알고리즘의 성능분석)

  • 박현복;김형주;최정희
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.29-33
    • /
    • 2000
  • The classical image reconstruction for stripmap SAR is based on the Fresnel approximation which utilizes deramping or chirp deconvolution in the synthetic aperture(slow-time) domain. Another approach in formulating stripmap SAR processing and imaging is based on the SAR wavefront reconsturction theory, and analysis of the SAR signal in the slow-time via the spherical wave Fourier decomposition of the radar radiation pattern. In this paper, we compare the Fresnel approximation and the wavefrong reconstruction methods using simulated stripmap SAR dada.

  • PDF

A study on the estimation of damage by storm and flood using satellite imagery (풍수해 피해규모 파악을 위한 위성영상의 활용방안 연구)

  • Sohn, Hong-Gyoo;Yun, Kong-Hyun;Lee, Jung-Bin;Jin, Kyung-Hyuk
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.111-114
    • /
    • 2007
  • One of future remote sensing techniques for the estimation of damage by storm and flood is the extraction of water area, which could be the basis of measuring the damage by storm and flood and estimate restoration cost. This paper introduces an approach to damage estimation using satellite Image. The project site was Ansung area and a set of Radarsat-1 SAR image at 6.25m resolution was used for the test. Authors investigated methods of SAR image processing such as shadow-effect removal, orthorectification of SAR image and calculation of damage area by flood. Consequetly, this study showed that technique improvement of image processing and the best of result for extracting water area. Also, found the new possibility of damage estimation using satellite image.

  • PDF

A Study on the Synthetic Aperture Radar System Motion Compensation Technique (SAR(Synthetic Aperture Radar)시스템 요동보상기법 연구)

  • Kang, Eun-Kyun;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.221-229
    • /
    • 2013
  • In this paper, the image formation by the motion compensation technique for Synthetic Aperture Radar system(SAR) were realized through the computer simulation. The motion compensation technique performed image data with the range compression, the compensation procedure, the azimuth compensation and the noise elimination procedure. The range compression procedure transform the SAR raw data into the frequency domain and correlate with the range reference function and then inversely transform into the time domain. The compensation procedure contain the aircraft fluctuations compensation and the radar image degrading effect elimination procedure which was caused by image formation algorithm itself. The aircraft fluctuations compensation procedure perform the first stage which correct the phase angle and the second stage which calculate the Doppler frequency and determine the coordinate of the received signal. The radar image degrading effect elimination procedure also perform range migration compensation and the image defocussing effect compensation. The azimuth compression procedure transform the compensation data to the frequency domain and correlate with the azimuth reference function. The azimuth correlated data are inversely transformed to the time domain which is called SAR image data. When the above procedure were completed, the image data contains the received signals mixed with noise. The threshold technique was applied to elimination the noise from the mixed image data.

Development of Mobile Active Transponder for KOMPSAT-5 SAR Image Calibration and Validation (다목적실용위성 5호의 SAR 영상 검·보정을 위한 이동형 능동 트랜스폰더 개발)

  • Park, Durk-Jong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1128-1139
    • /
    • 2013
  • KOMPSAT-5(KOrea Multi-Purpose SATellite-5) has a benefit of continuously conducting its mission in all weather and even night by loading SAR(Synthetic Aperture Radar) payload, which is different from optical sensor of KOMPSAT-2 satellite. During IOT(In-Orbit Test) periods, SAR image calibration should be conducted through ground target of which location and RCS is pre-determined. Differently from the conventional corner reflector, active transponder has a capability to change its internal transfer gain and delay, which allows active transponder to be shown in a pixel of SAR image with very high radiance and virtual location. In this paper, the development of active transponder is presented from design to I&T(Integration and Test).

A study on the image formation system variable and performance analysis for optimum design of high resolution SAR (고해상도 SAR 최적 설계를 위한 영상형성 시스템 변수 및 성능분석에 관한 연구)

  • Kwak, Jun-Young;Jeong, Dae-Gwon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.49-60
    • /
    • 2012
  • Synthetic aperture radar (SAR) has been employed in various fields due to its capability to generate high resolution images regardless of weather and visibility. This paper presents a performance analysis on the image formation of high resolution SAR according to various slant range distance and synthetic aperture lengths using a range migration algorithm simulator. Although the visual performance on the SAR image is more accurate, a numeric analysis resulted in a comparable measurement. More specifically, raw data were generated for an ideal point target upon imaging geometries and design parameters such as slant range distance and synthetic aperture lengths. Finally, spatial resolution, peak to sidelobe ratio and integrated sidelobe ratio are drawn to provide SAR capabilities in the initial concept design, final in-flight calibration and validation stages.