• Title/Summary/Keyword: SAR Data

Search Result 618, Processing Time 0.031 seconds

Experimental Study on DEM Extraction Using InSAR and 3-Pass DInSAR Processing Techniques (InSAR 및 3-Pass DInSAR 처리기법을 적용한 DEM 추출에 대한 실험 연구)

  • Bae, Sang-Woo;Lee, Jin-Duk
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.3
    • /
    • pp.176-186
    • /
    • 2007
  • As SAR data have the strong point that is not influenced by weather or light amount in comparison with optical sensor data, they are highly useful for temporary analysis and can be collected in time of unforeseen circumstances like disaster. This study is to extract DEM from L-band data of JERS-1 SAR imagery using InSAR and DInSAR processing techniques. As a result of analyzing the extracted coherence and interferogram images, it was shown that the DInSAR 3-pass method produces more suitable coherence values than the InSAR method. The accuracies of DEM extracted from the SAR data were evaluated by employing the DEM derived from the digital topographic maps of 1:5000 scale as reference data. And it was ascertained that baselines between antenna locations largely affect the accuracy of extracted DEM.

Extration of Digital Elevation Models Using InSAR Processing Techique (InSAR 처리기법에 의한 수치고도모형의 추출)

  • Lee Jin-Duk;Yeon Sang-Ho;Bae Sang-Woo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.142-145
    • /
    • 2005
  • As SAR data have the strong point that is not influenced by weather or light amount compared with optical sensor data, they have high usfulness as temporary analysis fast and can be collected in case of like disaster. This study is to extract DEM from L-band data of JERS-1 SAR imagery using InSAR and DInSAR processing techniques. The accuracies of DEM extracted from the SAR data were evaluated by employing DEM derived from the digital topographic maps of 1:5000 scale as standard data.

  • PDF

Measurement Data Comparison of Fast SAR Measurement System by Probe Arrays with Robot Scanning SAR Measurement System

  • Kim, Jun Hee;Gimm, Yoon-Myoung
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 2014
  • Dosimetry of radiating electromagnetic wave from mobile devices to human body has been evaluated by measuring Specific Absorption Rate (SAR). Usual SAR measurement system scans the volume by robot arm to evaluate RF power absorption to human body from wireless devices. It is possible to fast estimate the volume SAR by software deleting robot moving time with the 2D surface SAR data acquired by arrayed probes. This paper shows the principle of fast SAR measurement and the measured data comparison between the fast SAR system and the robot scanning system. Data of the fast SAR is well corresponding with data of robot scanning SAR within ${\pm}3$ dB, and its dynamic range covers from 10 mW/kg to 30 W/kg with 4.8 mm probe diameter.

Analysis of Relationships between Features Extracted from SAR Data and Land-cover Classes (SAR 자료에서 추출한 특징들과 토지 피복 항목 사이의 연관성 분석)

  • Park, No-Wook;Chi, Kwang-Hoon;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.257-272
    • /
    • 2007
  • This paper analyzed relationships between various features from SAR data with multiple acquisition dates and mode (frequency, polarization and incidence angles), and land-cover classes. Two typical types of features were extracted by considering acquisition conditions of currently available SAR data. First, coherence, temporal variability and principal component transform-based features were extracted from multi-temporal and single mode SAR data. C-band ERS-1/2, ENVISAT ASAR and Radarsat-1, and L-band JERS-1 SAR data were used for those features and different characteristics of different SAR sensor data were discussed in terms of land-cover discrimination capability. Overall, tandem coherence showed the best discrimination capability among various features. Long-term coherence from C-band SAR data provided a useful information on the discrimination of urban areas from other classes. Paddy fields showed the highest temporal variability values in all SAR sensor data. Features from principal component transform contained particular information relevant to specific land-cover class. As features for multiple mode SAR data acquired at similar dates, polarization ratio and multi-channel variability were also considered. VH/VV polarization ratio was a useful feature for the discrimination of forest and dry fields in which the distributions of coherence and temporal variability were significantly overlapped. It would be expected that the case study results could be useful information on improvement of classification accuracy in land-cover classification with SAR data, provided that the main findings of this paper would be confirmed by extensive case studies based on multi-temporal SAR data with various modes and ground-based SAR experiments.

ERS-1 AND CCRS C-SAR Data Integration For Look Direction Bias Correction Using Wavelet Transform

  • Won, J.S.;Moon, Woo-Il M.;Singhroy, Vern;Lowman, Paul-D.Jr.
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.49-62
    • /
    • 1994
  • Look direction bias in a single look SAR image can often be misinterpreted in the geological application of radar data. This paper investigates digital processing techniques for SAR image data integration and compensation of the SAR data look direction bias. The two important approaches for reducing look direction bias and integration of multiple SAR data sets are (1) principal component analysis (PCA), and (2) wavelet transform(WT) integration techniques. These two methods were investigated and tested with the ERS-1 (VV-polarization) and CCRS*s airborne (HH-polarization) C-SAR image data sets recorded over the Sudbury test site, Canada. The PCA technique has been very effective for integration of more than two layers of digital image data. When there only two sets of SAR data are available, the PCA thchnique requires at least one more set of auxiliary data for proper rendition of the fine surface features. The WT processing approach of SAR data integration utilizes the property which decomposes images into approximated image ( low frequencies) characterizing the spatially large and relatively distinct structures, and detailed image (high frequencies) in which the information on detailed fine structures are preserved. The test results with the ERS-1and CCRS*s C-SAR data indicate that the new WT approach is more efficient and robust in enhancibng the fine details of the multiple SAR images than the PCA approach.

Development of the SAR Data Processing Package

  • Kim Kwang-Yong;Jeong Soo;Kim Kyoung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.526-528
    • /
    • 2004
  • This paper describes the SAR data processing S/W package it will be able to process the SAR image. This package constructs the several modules: SAR Image processing module, measuring module of surface displacement using differential interferometric SAR method, classification module using the POLSAR data, SAR Focusing module. In this paper, briefly describe the algorithm that is adopted to the functions, and module architecture.

  • PDF

Correction of Radiometric Distortion Caused by Geometric Property in SAR image using SAR Simulation (SAR영상의 모의제작에 의한 기하학적 복사왜곡의 보정)

  • Jeong, Soo;Yeu, Bock-Mo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • SAR data can be achieved independently of weather conditions or sun illumination which is main limitation of electro-optical sensor to get image. The information from imagery can be more enlarged using Shh data be-cause SAR data offers different information from electro-optical sensor. SAR data contains various distortions caused by the radar specification and geometric properties of data acquisition. These distortions should be removed to get the information with acceptable accuracy. In this study, we aimed to correct the radiometric distortion in Shh image caused by the geometric property of the object. For this purpose, we simulated the SAR image by modelling of the power of return beam which is variable according to the geometric configuration between SAR antenna and ground object. Dividing the SAR image by the simulation image, then, we can get the radiometrically corrected image. As a result of this study, we could minimize the effect of radiometric distortion in achieving some qualitative information from SAR image for the related field, such as Geospatial Information System.

  • PDF

Radarsat-1 ScanSAR Quick-look Signal Processing and Demonstration Using SPECAN Algorithm (SPECAN 알고리즘을 이용한 Radatsat-1 ScanSAR Quick-look 신호 처리 및 검증 알고리즘 구현)

  • Song, Jung-Hwan;Lee, Woo-Kyung;Kim, Dong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.75-86
    • /
    • 2010
  • As the performance of the spaceborne SAR has been dramatically enhanced and demonstrated through advanced missions such as TerraSAR and LRO(Lunar Reconnaissance Orbiter), the need for highly sophisticated and efficient SAR processor is also highlighted. In Korea, the activity of SAR researches has been mainly concerned with SAR image applications and the current SAR raw data studies are mostly limited to stripmap mode cases. The first Korean spaceborne SAR is scheduled to be operational from 2010 and expected to deliver vast amount of SAR raw data acquired from multiple operational scenarios including ScanSAR mode. Hence there will be an increasing demand to implement ground processing systems that enable to analyze the acquired ScanSAR data and generate corresponding images. In this paper, we have developed an efficient ScanSAR processor that can be directly applied to spaceborne ScanSAR mode data. The SPECAN(Spectrum Analysis) algorithm is employed for this purpose and its performance is verified through RADARSAT-1 ScanSAR raw data taken over Korean peninsular. An efficient quick-look processing is carried out to produce a wide-swath SAR image and compared with the conventional RDA processing case.

Estimation of Ocean Current Velocity near Incheon using Radarsat-1 SAR and HF-radar Data

  • Kang, Moon-Kyung;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.421-430
    • /
    • 2007
  • This paper presents the results of the ocean surface current velocity estimation using 6 Radarsat-1 SAR images acquired in west coastal area near Incheon. We extracted the surface velocity from SAR images based on the Doppler shift approach in which the azimuth frequency shift is related to the motion of surface target in the radar direction. The Doppler shift was measured by the difference between the Doppler centroid estimated in the range-compressed, azimuth-frequency domain and the nominal Doppler centroid used during the SAR focusing process. The extracted SAR current velocities were statistically compared with the current velocities from the high frequency(HF) radar in terms of averages, standard deviations, and root mean square errors. The problem of the unreliable nominal Doppler centroid for the estimation of the SAR current velocity was corrected by subtracting the difference of averages between SAR and HF-radar current velocities from the SAR current velocity. The corrected SAR current velocity inherits the average of HF-radar data while maintaining high-resolution nature of the original SAR data.

Extraction of Ground Control Points from TerraSAR-X Data

  • Park, Jeong-Won;Hong, Sang-Hoon;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.328-331
    • /
    • 2008
  • It is possible to extract qualified ground control points (GCPs) solely from SAR data without published maps. TerraSAR-X is now in orbit and provides valuable data that have one of the highest spatial resolutions among civilian SAR systems. In this study, a sophisticated method for GCP coordinate extraction from TerraSAR-X stripmap mode data with a 3 m resolution was tested and the quality of the extracted GCPs was evaluated. An inverse-geolocation algorithm was applied to obtain GCPs from TerraSAR-X data. SRTM 90m DEM was used as an auxiliary data set for azimuth time correction of the SAR data. Mean values of the distance errors were 0.11 m and -3.96 m with standard deviations of 6.52 m and 5.11 m in easting and northing, respectively. The result is one of the best among GCPs possibly extracted from current civilian remote sensing systems. The extracted GCPs were used for geo-rectification of an IKONOS image, which demonstrated the applicability of the GCPs to geo-rectification of high resolution optic image. The method used in this study can be applied to KOMPSAT-5 for geo-rectification of high-resolution optic images acquired by KOMPSAT-2 or follow-up missions.

  • PDF