• Title/Summary/Keyword: SAR Calculation

Search Result 25, Processing Time 0.02 seconds

Analysis of SAR Distribution Characteristics in a Head Model using FDTD (FDTD를 이용한 인체 두부모델의 SAR 분포특성 해석)

  • Hong, Dong-Uk;Kim, Doo-Hyun;Kang, Dong-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.34-40
    • /
    • 2004
  • This paper presents an analysis of SAR(Specific Absorption Rate) distribution characteristics in a head model using FDTD(Finite Difference Time Domain). In this study human head was modelled in four elements-layered structure, consisting of skin, fat, skull and brain. To calculate the electromagnetic fields wihtin the head model, FDTD method was used. In the FDTD method, the electromagnetic wave is analyzed by solving a Maxwell's equations repeatedly. For the calculation, distance between power source and head model increased by 10[m]. Power density and incident electric field intensity were calculated. Based on the incident electric field, the program which calaculated internal electric fields intensity and SAR calculation of the head model were developed. The results of developed program using FDTD were compared with those of a commericial programs, which showed the availability and usefulness of the suggested scheme in this paper.

Calculation of Tissue-Air Ratios(TAR) in Irregularly shaped Field for Co-60 Gamma Radiation (CO-60 감마선에 대한 부정형조사면의 조직공중선량비 (TAR) 계산)

  • Ji Young-Hoon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.3 no.1
    • /
    • pp.27-36
    • /
    • 1989
  • In order to calculate the dose on each interest point in five types of irregularly shaped fields used commonly in radiotherapy, the tissue-air ratios (TAR) in these fields for Go-60 gamma radiation were calculated using the newly devised SAR-chart. The TARs calculated from newly method of using the SAR-chart, computer method and approximation method at the interest point were compared to the TARs obtained from measurement. The result are as follows; In case of the interest points on central axis the calculated TARs in irregularly shaped fields by the above mentioned methods were well agreed within the error of $1\%$, whereas for the interest points on off-axis the calculated TARs were resulted in the maximum errors of $2.4\%,\;2.3\%$ and $8.8\%$ respectively. From these results, the accuracy of calculation method of using the SAR-chart was comfirmed.

  • PDF

Mobi-Kids Study: Exposure Assessment of Electromagnetic Radiation from Mobile Phones -II. Evaluation Method of Head SAR and Cumulative Dose (Mobi-Kids Study: 휴대전화의 전자파 노출량 평가 -II. 머리 SAR 및 누적노출 평가 방법)

  • Lee, Ae-Kyoung;Hong, Seon-Eui;Choi, Kyung-Hwa;Ha, Mina;Choi, Hyung-Do
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1158-1166
    • /
    • 2013
  • SAR calculation method following the Mobi-Kids study protocol is analyzed and evaluation method of cumulative RF dose from mobile phones which have been used by a subject of case and control groups is proposed. An SAR database is built by calculating SAR distributions in 4 head models at different ages for representative phone models with the same conducted power. To obtain SAR distribution in a subject's head for a specific commercial phone which had/have been used by him/her, an SAR correction factor using SAR compliance test results is determined. Cumulative dose is calculated by considering mobile phone characteristics and use pattern such as call time and laterality(right and left).

Hand-Held Mobile Phone Design for SAR Reduction (SAR 저감을 위한 휴대폰 설계)

  • 홍수원;오학태;박천석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.352-359
    • /
    • 2001
  • We propose the row method that is able to consider the SAR compliance test from the very beginning step of developing the mobile phone. The reason this new method is plausible is that we adopt the certified FDTD for the reliability of calculation, utilizing 1 mm high resolution model that is to model the phantom and the mobile phone almost identically to the reality. In this paper we introduce the process that will apply the proposed method in order to reduce the SAR of the mobile phone that has been problematic in satisfying the SAR compliance test. It results in dropping in the SAR that we keep the mobile phone or its antenna while we use it. Therefore here we make a claim as fellows. When we develop the new mobile phone, we should use the computer simulation combining the CAD design and radiation pattern rather than make a prototype and then use the trial and error method. Moreover the former way leads us to boost up the developing efficiency and reduce the cost.

  • PDF

Effects of Size and Permittivity of Rat Brain on SAR Values at 900 MHz and 1,800 MHz

  • Hyun Jong-Chul;Oh Yi-Sok
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • The objective of this study is to evaluate the effects of size and permittivity on the specific absorption rate(SAR) values of rat brains during microwave exposure at mobile phone frequency bands. A finite difference time domain (FDTD) technique with perfect matching layer(PML) absorbing boundaries is used for this evaluation process. A color coded digital image of the Sprague Dawley(SD) rat based on magnetic resonance imaging(MRI) is used in FDTD calculation with appropriate permittivity values corresponding to different tissues for 3, 4, 7, and 10 week old rats. This study is comprised of three major parts. First, the rat model structure is scaled uniformly, i.e., the rat size is increased without change in permittivity. The simulated SAR values are compared with other experimental and numerical results. Second, the effect of permittivity on SAR values is examined by simulating the microwave exposure on rat brains with various permittivity values for a fixed rat size. Finally, the SAR distributions in depth, and the brain-averaged SAR and brain 1 voxel peak SAR values are computed during the microwave exposure on a rat model structure when both size and permittivity have varied corresponding to different ages ranging from 3 to 10 weeks. At 900 MHz, the simulation results show that the brain-averaged SAR values decreased by about 54 % for size variation from the 3 week to the 10 week-old rat model, while the SAR values decreased only by about 16 % for permittivity variation. It is found that the brain averaged SAR values decreased by about 63 % when the variations in size and permittivity are taken together. At 1,800 MHz, the brain-averaged SAR value is decreased by 200 % for size variation, 9.7 % for permittivity variation, and 207 % for both size and permittivity variations.

FDTD Calculation for SAR Induced in a Head Model by the Electromagnetic Fields Irradiated from a Cellular Phone (휴대폰 전자파에 노출된 頭部에 흡수되는 SAR의 FDTD에 의한 해석)

  • 이윤경;임현준;우종우;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • The near field radiated from the monopole antenna of the cellular phone was calculated by using the modified finite difference time domain algorithm derived from the integral form of Maxwell's equations. Substituting the near field value into the differential form of Maxwell's equations, SAR's distribution in the human head was obtained. The human head was simulated by a model of 800,000 block cells with dielectric constant and conductivity. The cell size was taken to be 0.5 cm. the transmitted power of the cellular phone was assumed to be 0.6 watts at the frequency of 833 MHz. The distance between the head and the cellular phone was 2.0 cm, the maximum SAR induced in the human head was about 1.5 W/kg and was below the IEEE's upper safety limit of 1.6 W/kg.

  • PDF

A study on the estimation of damage by storm and flood using satellite imagery (풍수해 피해규모 파악을 위한 위성영상의 활용방안 연구)

  • Sohn, Hong-Gyoo;Yun, Kong-Hyun;Lee, Jung-Bin;Jin, Kyung-Hyuk
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.111-114
    • /
    • 2007
  • One of future remote sensing techniques for the estimation of damage by storm and flood is the extraction of water area, which could be the basis of measuring the damage by storm and flood and estimate restoration cost. This paper introduces an approach to damage estimation using satellite Image. The project site was Ansung area and a set of Radarsat-1 SAR image at 6.25m resolution was used for the test. Authors investigated methods of SAR image processing such as shadow-effect removal, orthorectification of SAR image and calculation of damage area by flood. Consequetly, this study showed that technique improvement of image processing and the best of result for extracting water area. Also, found the new possibility of damage estimation using satellite image.

  • PDF

Verification of Kompsat-5 Sigma Naught Equation (다목적실용위성 5호 후방산란계수 방정식 검증)

  • Yang, Dochul;Jeong, Horyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1457-1468
    • /
    • 2018
  • The sigma naught (${\sigma}^0$) equation is essential to calculate geo-physical properties from Synthetic Aperture Radar (SAR) images for the applications such as ground target identification,surface classification, sea wind speed calculation, and soil moisture estimation. In this paper, we are suggesting new Kompsat-5 (K5) Radar Cross Section (RCS) and ${\sigma}^0$ equations reflecting the final SAR processor update and absolute radiometric calibration in order to increase the application of K5 SAR images. Firstly, we analyzed the accuracy of the K5 RCS equation by using trihedral corner reflectors installed in the Kompsat calibration site in Mongolia. The average difference between the calculated values using RCS equation and the measured values with K5 SAR processor was about $0.2dBm^2$ for Spotlight and Stripmap imaging modes. In addition, the verification of the K5 ${\sigma}^0$ equation was carried out using the TerraSAR-X (TSX) and Sentinel-1A (S-1A) SAR images over Amazon rainforest, where the backscattering characteristics are not significantly affected by the seasonal change. The calculated ${\sigma}^0$ difference between K5 and TSX/S-1A was less than 0.6 dB. Considering the K5 absolute radiometric accuracy requirement, which is 2.0 dB ($1{\sigma}$), the average difference of $0.2dBm^2$ for RCS equation and the maximum difference of 0.6 dB for ${\sigma}^0$ equation show that the accuracies of the suggested equations are relatively high. In the future, the validity of the suggested RCS and ${\sigma}^0$ equations is expected to be verified through the application such as sea wind speed calculation, where quantitative analysis is possible.

Automatic Estimation of Geometric Translations Between High-resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 자동 변위량 추정)

  • Han, You Kyung;Byun, Young Gi;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.41-48
    • /
    • 2012
  • Using multi-sensor or multi-temporal high resolution satellite images together is essential for efficient applications in remote sensing area. The purpose of this paper is to estimate geometric difference of translations between high-resolution optical and SAR images automatically. The geometric and radiometric pre-processing steps were fulfilled to calculate the similarity between optical and SAR images by using Mutual Information method. The coarsest-level pyramid images of each sensor constructed by gaussian pyramid method were generated to estimate the initial translation difference of the x, y directions for calculation efficiency. The precise geometric difference of translations was able to be estimated by applying this method from coarsest-level pyramid image to original image in order. Yet even when considered only translation between optical and SAR images, the proposed method showed RMSE lower than 5m in all study sites.

Computation of Temperature Rising by Absorbed Power Radiated from a Portable Phone (휴대폰 전파인 인제 흡수전력량과 온도 상승량 산출)

  • 이승학;김채영;강승진
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.409-426
    • /
    • 2001
  • Absorbed power of the human head radiated from a 900 MHz portable phone and temperature rise are computed using FDTD(Finite-Difference Time-Domain) method. For this computation the 5 layered media for the human head modeling and the monopole antenna attached to metallic box for the portable phone are used. To reflect the real circumstances typical sizes of human heads and portable phones are considered in the calculation. The length of monopole antenna is 8.15 cm, and the output power of a phone is 600 mW. Under the predetermined model the distribution of 1 g, 10 g averaged SAR and temperature rise rate over the human head are calculated, from which it was found that the position of maximum SAR is near at the head skin surface, not deep places far into the head. The position of the highest temperature is located far from the head skin more than that of the maximum SAR occured. The averaged SAR and temperature along the distance between the head and phone are calculated according to seperation distance between the head and phone.

  • PDF