• Title/Summary/Keyword: SAR 이미지 분류 학습

Search Result 2, Processing Time 0.016 seconds

Semi-supervised SAR Image Classification with Threshold Learning Module (임계값 학습 모듈을 적용한 준지도 SAR 이미지 분류)

  • Jae-Jun Do;Sunok Kim
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.177-187
    • /
    • 2023
  • Semi-supervised learning (SSL) is an effective approach to training models using a small amount of labeled data and a larger amount of unlabeled data. However, many papers in the field use a fixed threshold when applying pseudo-labels without considering the feature-wise differences among images of different classes. In this paper, we propose a SSL method for synthetic aperture radar (SAR) image classification that applies different thresholds for each class instead of using a single fixed threshold for all classes. We propose a threshold learning module into the model, considering the differences in feature distributions among classes, to dynamically learn thresholds for each class. We compare the application of a SSL SAR image classification method using different thresholds and examined the advantages of employing class-specific thresholds.

An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images (Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출)

  • Choi, Soyeon;Youn, Youjeong;Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Lee, Seulchan;Choi, Minha;Jeong, Hagyu;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.925-938
    • /
    • 2022
  • Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.