• 제목/요약/키워드: SAM protein

검색결과 430건 처리시간 0.023초

Identification of Gene Expression Signatures in the Chicken Intestinal Intraepithelial Lymphocytes in Response to Herb Additive Supplementations

  • Won, Kyeong-Hye;Song, Ki-Duk;Park, Jong-Eun;Kim, Duk-Kyung;Na, Chong-Sam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권10호
    • /
    • pp.1515-1521
    • /
    • 2016
  • Anethole and garlic have an immune modulatory effects on avian coccidiosis, and these effects are correlated with gene expression changes in intestinal epithelial lymphocytes (IELs). In this study, we integrated gene expression datasets from two independent experiments and investigated gene expression profile changes by anethole and garlic respectively, and identified gene expression signatures, which are common targets of these herbs as they might be used for the evaluation of the effect of plant herbs on immunity toward avian coccidiosis. We identified 4,382 and 371 genes, which were differentially expressed in IELs of chickens supplemented with garlic and anethole respectively. The gene ontology (GO) term of differentially expressed genes (DEGs) from garlic treatment resulted in the biological processes (BPs) related to proteolysis, e.g., "modification-dependent protein catabolic process", "proteolysis involved in cellular protein catabolic process", "cellular protein catabolic process", "protein catabolic process", and "ubiquitin-dependent protein catabolic process". In GO analysis, one BP term, "Proteolysis", was obtained. Among DEGs, 300 genes were differentially regulated in response to both garlic and anethole, and 234 and 59 genes were either up- or down-regulated in supplementation with both herbs. Pathway analysis resulted in enrichment of the pathways related to digestion such as "Starch and sucrose metabolism" and "Insulin signaling pathway". Taken together, the results obtained in the present study could contribute to the effective development of evaluation system of plant herbs based on molecular signatures related with their immunological functions in chicken IELs.

Cloning and Characterization of a Gene Encoding $\gamma-Butyrolactone$ Autoregulator Receptor from Saccharopolyspora erythraea

  • LEE YONG-JIK;YEO SOO-HWAN;LEE IN SEON;LEE SAM-PIN;KITANI SHIGERU;NIHIRA TAKUYA;KIM HYUN SOO
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.77-83
    • /
    • 2006
  • A gene encoding a $\gamma-butyrolactone$ autoregulator receptor was cloned from Saccharopolyspora erythraea, and the biochemical characteristics, including the autoregulator specificity, were determined with the purified recombinant protein. Using primers designed for the conserved amino acid sequence of Streptomyces $\gamma-butyrolactone$ autoregulator receptors, a 120 bp S. erythraea DNA fragment was obtained by PCR. Southern and colony hybridization with the 120 bp fragment as a probe allowed to select a genomic clone of S. erythraea, pESG, harboring a 3.2 kb SacI fragment. Nucleotide sequencing analysis revealed a 615 bp open reading frame (ORF), showing moderate homology (identity, $31-34\%$; similarity, $45-47\%$) with the $\gamma-butyrolactone$ autoregulator receptors from Streptomyces sp., and this ORF was named seaR (Saccharopolyspora erythraea autoregulator receptor). The seaR/pET-3d plasmid was constructed to overexpress the recombinant SeaR protein (rSeaR) in Escherichia coli, and the rSeaR protein was purified to homogeneity by DEAE-Sephacel column chromatography, followed by DEAE-ion-exchange HPLC. The molecular mass of the purified rSeaR protein was 52 kDa by HPLC gel-filtration chromatography and 27 kDa by SDS-polyacrylamide gel electrophoresis, indicating that the rSeaR protein is present as a dimer. A binding assay with tritium-labeled autoregulators revealed that rSeaR has clear binding activity with a VB-C-type autoregulator as the most effective ligand, demonstrating for the first time that the erythromycin producer S. erythraea possesses a gene for the $\gamma-butyrolactone$autoregulator receptor.

Molecular Cloning and Expression of a Novel Cuticle Protein Gene from the Chinese Oak Silkmoth, Antheraea pernyi

  • Kim Bo Yeon;Park Nam Sook;Jin Byung Rae;Kang Pil Don;Lee Bong Hee;Seong Su Il;Hwang Jae Sam;Chang Jong Su;Lee Sang Mong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제10권1호
    • /
    • pp.11-17
    • /
    • 2005
  • In our research to identify gene involved in the cuticle protein, we cloned a novel cuticle protein gene, ApCP15.5, from the Chinese oak silkmoth, Antheraea pernyi, larvae cDNA library. The gene encodes a 149 amino acid polypeptide with a predicted molecular mass of 15.5 kDa and a pI of 9.54. The ApCP15.5 contained a type-specific consensus sequence identifiable in other insect cuticle proteins and the deduced amino acid sequence of the ApCP15.5 cDNA is most homologous to Tenebrio molitor-C1B ($43\%$ protein sequence identity), followed by Locusta migratoria-76 ($42\%$ protein sequence identity). Northern blot and Western blot analyses revealed that the ApCP15.5 showed the epidermis-specific expression. The expression profile of ApCP15.5 indicated that the ApCP15.5 mRNA expression was detected in the early stages after larval ecdysis and larval-pupal metamorphosis, and its expression level was most significant on the first day of larval ecdysis and pupal stage. The ApCP15.5 was expressed as a 15.5 kDa polypeptide in baculovirus-infected insect cells.

Baculovirus Expression and Biochemical Characterization of the Bombyx mori Protein Disulfide Isomerase (bPDI)

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Park, Kwang-Ho;Hwang, Jae-Sam;Kwon, O-Yu;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제7권2호
    • /
    • pp.127-131
    • /
    • 2003
  • Protein disulfide isomerase (PDI) found in the endoplasmic reticulum (ER) catalyzes disulfide bond exchange and assists in protein folding of newly synthesized proteins. PDI also functions as a molecular chaperone and has been found to be associated with proteins in the ER. In addition, PDI functions as a subunit of two more complex enzyme systems: the prolyl-4-hydroxylase and the triacylglycerol transfer proteins. A cDNA that encodes protein disulfide isomerase was previously isolated from Bombyx mori (bPDI), in which open reading frame of 494 amino acids contained two PDI-typical thioredoxin active site of WCGHCK and an ER retention signal of the KDEL motif at its C-terminal, and we report its functional characterization here. This putative bPDI cDNA is expressed in insect Sf9 cells as a recombinant proteins using baculovirus expression vector system. The bPDI recombinant proteins are successfully recognized by antirat PDI antibody, and shown to be biologically active in vitro by mediating the oxidative refolding of reduced and scrambled RNase. This suggests that bPDI may play an important role in protein folding mechanism of insects.

Effect of BIS depletion on HSF1-dependent transcriptional activation in A549 non-small cell lung cancer cells

  • Yun, Hye Hyeon;Baek, Ji-Ye;Seo, Gwanwoo;Kim, Yong Sam;Ko, Jeong-Heon;Lee, Jeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권4호
    • /
    • pp.457-465
    • /
    • 2018
  • The expression of BCL-2 interacting cell death suppressor (BIS), an anti-stress or anti-apoptotic protein, has been shown to be regulated at the transcriptional level by heat shock factor 1 (HSF1) upon various stresses. Recently, HSF1 was also shown to bind to BIS, but the significance of these protein-protein interactions on HSF1 activity has not been fully defined. In the present study, we observed that complete depletion of BIS using a CRISPR/Cas9 system in A549 non-small cell lung cancer did not affect the induction of heat shock protein (HSP) 70 and HSP27 mRNAs under various stress conditions such as heat shock, proteotoxic stress, and oxidative stress. The lack of a functional association of BIS with HSF1 activity was also demonstrated by transient downregulation of BIS by siRNA in A549 and U87 glioblastoma cells. Endogenous BIS mRNA levels were significantly suppressed in BIS knockout (KO) A549 cells compared to BIS wild type (WT) A549 cells at the constitutive and inducible levels. The promoter activities of BIS and HSP70 as well as the degradation rate of BIS mRNA were not influenced by depletion of BIS. In addition, the expression levels of the mutant BIS construct, in which 14 bp were deleted as in BIS-KO A549 cells, were not different from those of the WT BIS construct, indicating that mRNA stability was not the mechanism for autoregulation of BIS. Our results suggested that BIS was not required for HSF1 activity, but was required for its own expression, which involved an HSF1-independent pathway.

닭 췌장 Protein Methylase II의 분리정제 및 성질 (Protein Methylase II from Chicken Pancreas: Purification and Properties)

  • 유태무;남궁석민;홍성렬;이향우
    • 약학회지
    • /
    • 제35권6호
    • /
    • pp.473-482
    • /
    • 1991
  • Protein methylase II (S-adenosyl-L-methionine:protein carboxyl-O-methyltransferase; EC 2.1.1.24., PM II) was purified from chicken pancreas by subcellular fractionation, DEAE-cellulose chromatography, QAE-Sephadex A-50 chromatography, Sephadex G-75 chromatography, and Sephadex G-75 rechromatography. The purified PM II gave a single band upon polyarcrylamide gel electrophoresis both in the presence of SDS and in Tris glycine buffer without SDS. The pI value of purified PM II was identified as 5.7 on isoelectric focusing gel. Properties and activities of PM II were studied and the following results were obtained. 1) PM II from chicken pancreas was purified approximately 221-fold with a yield of 1.3%. 2) The purified PM II appear constituted of a single polypeptide chain of a molecular weight 46,800 daltons. 3) Hemoglobin exhibited the highest of methyl-accepting activity among the substrates tested. 4) The purified PM II has a $K_m$ of $4.67{\times}10^{-6}M$ and a $V_{max}$ of 37.5 pmoles of $methyl-^{14}C/min./mg$ enzyme for $SAM^{-14}CH_3$ as methyl donor in the presence of histone type II-As. 5) It is found that S-adenosyl-L-homocysteine is a competitive inhibitor for PM II with $K_i$ value of $3.23{\times}10^{-5}M$.

  • PDF

L-ascorbic acid induces apoptosis in human laryngeal epidermoid Hep-2 cells by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells/mitogen-activated protein kinase/Akt signaling pathway

  • Park, Jung-Sun;Kim, Yoon-Jung;Park, Sam Young;Chung, Kyung-Yi;Oh, Sang-Jin;Kim, Won-Jae;Jung, Ji-Yeon
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.169-178
    • /
    • 2020
  • L-ascorbic acid (L-AA; vitamin C) induces apoptosis in cancer cells. This study aimed to elucidate the molecular mechanisms of L-AA-induced apoptosis in human laryngeal epidermoid carcinoma Hep-2 cells. L-AA suppressed the viability of Hep-2 cells and induced apoptosis, as shown by the cleavage and condensation of nuclear chromatin and increased number of Annexin V-positive cells. L-AA decreased Bcl-2 protein expression but upregulated Bax protein levels. In addition, cytochrome c release from the mitochondria into the cytosol and activation of caspase-9, -8, and -3 were enhanced by L-AA treatment. Furthermore, apoptosis-inducing factor (AIF) and endonuclease G (EndoG) were translocated into the nucleus during apoptosis of L-AA-treated Hep-2 cells. L-AA effectively inhibited the constitutive nuclear factor-κB (NF-κB) activation and attenuated the nuclear expression of the p65 subunit of NF-κB. Interestingly, L-AA treatment of Hep-2 cells markedly activated Akt and mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase [JNK]) and and LY294002 (Akt inhibitor), SB203580 (p38 inhibitor) or SP600125 (a JNK inhibitor) decreased the levels of Annexin V-positive cells. These results suggested that L-AA induces the apoptosis of Hep-2 cells via the nuclear translocation of AIF and EndoG by modulating the Bcl-2 family and MAPK/Akt signaling pathways.

Comparative Homology Modeling and Ligand Docking Study of Human Catechol-O-Methyltransferase for Antiparkinson Drug Design

  • Lee, Jee-Young;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1695-1700
    • /
    • 2005
  • Catechol-O-methyltransferase (COMT, EC 2.1.1.6) is an S-adenosylmethionine (SAM, AdoMet) dependent methyltransferase, and is related to the functions of the neurotransmitters in various mental processes, such as Parkinson’s disease. COMT inhibitors represent a new class of antiparkinson drugs, when they are coadministered with levodopa. Based on x-ray structure of rat COMT (rCOMT), the three dimensional structure of human COMT (hCOMT) was constructed by comparative homology modeling using MODELLER. The catalytic site of these two proteins showed subtle differences, but these differences are important to determine the characterization of COMT inhibitor. Ligand docking study is carried out for complex of hCOMT and COMT inhibitors using AutoDock. Among fifteen inhibitors chosen from world patent, nine models were energetically favorable. The average value of heavy atomic RMSD was 1.5 $\AA$. Analysis of ligand-protein binding model implies that Arg201 on hCOMT plays important roles in the interactions with COMT inhibitors. This study may give insight to develop new ways of antiparkinson drug.

cis-Dichlorodiammineplatinum (II)이 흰쥐 경골의 골단연골판에 미치는 영향 (Effects of cis-Dichlorodiammineplatinum (II) on the Epiphyseal Plate of the Tibia in the Albino Rat)

  • 김종관;김원규;정호삼
    • Applied Microscopy
    • /
    • 제26권2호
    • /
    • pp.197-206
    • /
    • 1996
  • cis-Dichlorodiammineplatinum (II) (cis-Platin) inhibits the proliferation and growth of the tumor cells by way of inhibiting DNA and protein synthesis of the cancer cells. Although cis-Platin is very effective antitumor drug, it also produces many other side effects. Thus the author has studied the effects of cis-Platin on the proximal epiphyseal plate in the tibia of the rat. The results were as follows: In the chondrocyte of the proliferative zone, sacculated, and fragmented cisternae of rough endoplasmic reticulum, some mitochondria with disorganized mitochondrial cristae and distorted procollagens were observed, and in the matrix some large matrix granules and dispersed collagen fibrils were revealed on the 1st, 3rd day and 1st week group of cis-Platin treated rats. In the chondrocyte of the proliferative zone of cis-Platin treated rats on the 2nd and 3rd week group, parallely arranged rough endoplasmic reticulum and many procollagens were shown, and in the matrix a number of large matrix granules and many small matrical granules as well as collagen fibrils were revealed. Consequently it is suggested that though cis-Platin induces the degenerative changes of the chondrocyte resulting in components of the cartilagenous matrix, these toxic effects are regressed with time.

  • PDF

Ataxin-2 Dysregulation Triggers a Compensatory Fragile X Mental Retardation Protein Decrease in Drosophila C4da Neurons

  • Cha, In Jun;Lee, Davin;Park, Sung Soon;Chung, Chang Geon;Kim, Seung Yeon;Jo, Min Gu;Kim, Seung Yeol;Lee, Byung-Hoon;Lee, Young-Sam;Lee, Sung Bae
    • Molecules and Cells
    • /
    • 제43권10호
    • /
    • pp.870-879
    • /
    • 2020
  • Dendrites require precise and timely delivery of protein substrates to distal areas to ensure the correct morphology and function of neurons. Many of these protein substrates are supplied in the form of ribonucleoprotein (RNP) complex consisting of RNA-binding proteins (RBPs) and mRNAs, which are subsequently translated in distal dendritic areas. It remains elusive, however, whether key RBPs supply mRNA according to local demands individually or in a coordinated manner. In this study, we investigated how Drosophila sensory neurons respond to the dysregulation of a disease-associated RBP, Ataxin-2 (ATX2), which leads to dendritic defects. We found that ATX2 plays a crucial role in spacing dendritic branches for the optimal dendritic receptive fields in Drosophila class IV dendritic arborization (C4da) neurons, where both expression level and subcellular location of ATX2 contribute significantly to this effect. We showed that translational upregulation through the expression of eukaryotic translation initiation factor 4E (eIF4E) further enhanced the ATX2-induced dendritic phenotypes. Additionally, we found that the expression level of another disease-associated RBP, fragile X mental retardation protein (FMRP), decreased in both cell bodies and dendrites when neurons were faced with aberrant upregulation of ATX2. Finally, we revealed that the PAM2 motif of ATX2, which mediates its interaction with poly(A)-binding protein (PABP), is potentially necessary for the decrease of FMRP in certain neuronal stress conditions. Collectively, our data suggest that dysregulation of RBPs triggers a compensatory regulation of other functionally-overlapping RBPs to minimize RBP dysregulation-associated aberrations that hinder neuronal homeostasis in dendrites.