• 제목/요약/키워드: SAM(Spectral Angle Mapping)

검색결과 6건 처리시간 0.023초

초분광영상의 분광라이브러리를 이용한 토지피복분류의 정확도 향상에 관한 연구 (The Study on Improving Accuracy of Land Cover Classification using Spectral Library of Hyperspectral Image)

  • 박정서;서진재;고제웅;조기성
    • 지적과 국토정보
    • /
    • 제46권2호
    • /
    • pp.239-251
    • /
    • 2016
  • 밴드 수가 많고 밴드 폭이 좁은 초분광영상은 기존의 다중 분광 영상에 비해 각 픽셀이 함유하고 있는 정보가 많아 영상을 이용한 토지피복분류를 하는데 있어 최적의 영상으로 평가 받고 있다. 하지만 초분광영상의 높은 분광해상도로 부터 증가된 데이터의 용량과 노이즈로 인해 다중분광영상을 분석하는 기법을 그대로 적용하기에는 효용성이 떨어진다. 초분광영상의 분석 기법으로서 벡터의 내적을 활용하는 SAM(Spectral Angle Mapping)은 연속적인 스펙트럼을 보이는 초분광영상의 특성을 해석하는데 가장 보편적인 방법이다. 이에 본 연구에서는 분광라이브러리를 이용한 초분광영상의 토지피복분류를 수행하기 위해 SAM기법을 채택하였으나 대기영향의 노이즈로 인해 낮은 정확도를 보였다. 이를 보안하기 위한 방법으로서 Decision Tree 기법을 제안하였고 그 결과, 분류 정확도를 향상시킬 수 있었다.

초분광영상의 토지피복분류 정확도 향상을 위한 Decision Tree 기법 연구 (The study on Decision Tree method to improve land cover classification accuracy of Hyperspectral Image)

  • 서진재;조기성;송장기
    • 한국지리정보학회지
    • /
    • 제21권3호
    • /
    • pp.205-213
    • /
    • 2018
  • 초분광영상(Hyperspectral Image)은 다중분광영상에 비해 각 픽셀이 가지는 정보량이 많아 다양한 토지피복을 분류하는데 있어 가장 적합한 영상으로 평가 받고 있다. 하지만 최근의 초분광영상의 연구는 대분류에 해당하는 연구에 그치고 있다. 이에 본 연구에서는 다양한 토지피복분류에 대한 연구를 수행하기 위해 기존의 분석기법인 ED, SAM, SSS 기법을 토대로 Decision Tree를 구성하는 연구를 수행하였다. 그 결과, 대분류의 전체정확도는 1.68%, 세분류 전체정확도는 5.56%가 향상되는 결과를 얻을 수 있었다.

항공 초분광 영상으로부터 연안지역의 SAM 토지피복분류 (Land Cover Classification of Coastal Area by SAM from Airborne Hyperspectral Images)

  • 이진덕;방건준;김현호
    • 한국지리정보학회지
    • /
    • 제21권1호
    • /
    • pp.35-45
    • /
    • 2018
  • 항공기 탑재용 초분광 카메라시스템에 의해 얻어진 영상데이터는 수십 내지 수백의 연속된 초분광 해상도로부터 동시에 각 화소별 완전한 분광 및 공간정보를 포함하고 있으므로 복잡한 연안지역에 대한 해안선 매핑, 특정재료로 이루어진 시설물 탐지, 연안지역의 토지이용 상세분석 및 변화 모니터링 등에 그 활용잠재성이 대단히 크다. 육역과 해역을 포함하는 연안지역을 대상으로 항공기 탑재 초분광센서인 CASI-1500으로부터 취득된 초분광 항공영상을 이용하여 분광각매퍼(SAM;Spectral Angle Mapper) 감독분류방법으로 토지피복분류를 행하였다. 첫번째, 대기보정영상에 대하여 육역과 해역이 포함된 지역에 대한 통합분류, 두번째, 육 해역의 통합분류결과로부터 육역과 해역의 분리 후 재분류, 그리고 세번째로 육역만을 대상으로 한 분류를 각각 수행하여 결과 및 정확도를 비교하였다. 또한 초분광 항공영상 48개 밴드로부터 IKONOS, QuickBird, KOMPSAT, GeoEye 등 고해상도 위성영상과 동일한 파장대의 4개 밴드영상, 그리고 WorldView-2 위성영상과 동일한 파장대의 8개 밴드영상만을 선택하여 각각 토지피복분류를 수행하고 초분광 48개 밴드영상으로 분류한 결과와 비교하였다. 연구결과, 연안지역에 대한 육역과 해역 통합영상으로 분류하는 것에 비해 육역과 해역 통합영상으로 분류한 후 육역과 해역을 분리하여 재분류를 수행하는 것이 효과적인 것으로 나타났다. 육역의 분류 결과에서 분광해상도가 높은 영상의 결과일수록 아스팔트나 콘크리트 도로가 더 정확하게 분류되었다.

UAV를 활용한 초분광 영상의 하천공간특성 분류 연구 (The Study on Spatial Classification of Riverine Environment using UAV Hyperspectral Image)

  • 김영주;한형준;강준구
    • 한국산학기술학회논문지
    • /
    • 제19권10호
    • /
    • pp.633-639
    • /
    • 2018
  • 하천환경을 구성하고 있는 복잡하고 다양한 인자의 특성에 따라 공간을 세밀하게 분류하기 위해서는 원격탐사(RS)를 통해 고해상도의 영상을 확보하는 것이 무엇보다 중요하다. 본 연구는 하천공간을 대상으로 환경 특성에 따른 공간 분류를 수행하기 위해 드론을 활용하여 취득한 고해상도 초분광 영상의 활용 가능성을 제시하고, 분류 결과에 대한 정확도를 평가하고자 하였다. 연구지역에서 획득한 초분광 영상은 노이즈로 인한 영향을 줄이고자 MNF와 PCA 기법으로 차원축소를 수행하였으며, MLC(Maximum Likelihood Classification)와 SVM(Support Vector Machine), SAM(Spectral Angle Mapping) 감독분류기법을 적용하여 하천환경특성에 따른 공간분류를 수행하였다. 연구 결과 MNF기법으로 차원 축소한 영상을 적용하여 MLC 감독분류를 수행하였을 때 가장 높은 분류정확도를 얻을 수 있었으나, 일부 클래스 및 수역의 경계와 그림자 공간에서 주로 오분류가 나타나는 것을 확인할 수 있었다. 이와 같은 연구 결과는 앞으로 드론과 초분광센서를 적용한 원격탐사를 위한 기초자료로 활용 할 수 있으며, 추가적인 알고리즘 개발을 통해 보다 광범위한 하천환경 분야에 적용할 수 있을 것으로 기대한다.

초분광 영상정보를 활용한 하천환경 분류 및 평가 (Classification and evaluation of river environment using Hyperspectral images)

  • 한형준;이창훈;강준구;김종태
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.423-423
    • /
    • 2019
  • RGB나 다중분광영상은 높은 공간 해상도로 인해 크기가 작은 물질의 클래스를 부여하는데 있어서는 효과적이지만 분광해상도가 낮아 다양한 종류의 지표물 분류 및 분광적으로 미세한 차이를 보이는 대상 체간의 분류에는 한계를 가지고 있다. 그러나 초분광 영상(Hyperspectral Image)은 대상 객체의 분광 반사곡선을 수백개의 연속적인 분광 파장대 영역으로 상세하게 해당 물체의 정보를 취득할 수 있는 기능을 가지고 있다. 최근 국내에서도 초분광 영상을 이용한 토지피복도 작성 및 환경 모니터링 등 다양한 분야에 적용하기 위한 연구가 시도되고 있다. 최근에는 드론과 같은 소형 UAV를 활용하여 경제적인 비용으로 시공간해상도가 높은 영상을 획득하는 것이 가능하게 되었으며 분광정보를 수집하는 영상 장비의 발전으로 드론에 탑재가 가능한 경량의 소형 초분광센서가 개발됨으로써 보다 높은 분광해상도의 영상을 취득할 수 있게 되었다. 본 연구에서는 효율적인 하천환경조사를 위해 UAV를 활용하여 고해상도 초분광 영상을 취득하였으며, 차원축소법과 분류기 적용에 따른 공간 분류 정확도 분석을 통해 하천환경에 대한 분류 및 평가를 실시하였다. 연구지역에서 획득한 초분광 영상은 노이즈로 인한 영향을 줄이고자 MNF와 PCA 기법으로 차원축소를 수행하였으며, MLC(Maximum Likelihood Classification)와 SVM(Support Vector Machine), SAM(Spectral Angle Mapping) 감독분류기법을 적용하여 하천환경특성에 따른 공간분류를 수행하였다. 연구 결과 MNF기법으로 차원 축소한 영상을 적용하여 MLC 감독분류를 수행하였을 때 가장 높은 분류정확도를 얻을 수 있었으나, 일부 클래스 및 수역의 경계와 그림자 공간에서 주로 오분류가 나타나는 것을 확인할 수 있었다.

  • PDF

항공 하이퍼스펙트럴 영상의 PCA기법 적용을 통한 토지 피복 분류 정확도 개선 방안에 관한 연구 (A Study on the Improvement classification accuracy of Land Cover using the Aerial hyperspectral image with PCA)

  • 최병길;나영우;김승현;이정일
    • 대한공간정보학회지
    • /
    • 제22권1호
    • /
    • pp.81-88
    • /
    • 2014
  • 본 연구에서는 항공 하이퍼스펙트럴 영상에 대해 PCA를 적용하여 토지 이용 및 피복 분류 판독의 가독성을 향상시키기 위하여 고유성분이 높은 밴드를 선별적으로 조합하여 5개 유형의 PCA영상을 제작하였다. 유형별 영상은 SAM감독 분류 기법을 적용하여 영상분류를 시행하고 정확도를 평가한 결과 PCA변환 시 고유성분 포함율은 PCA변환 영상의 첫 번째 밴드에 해당하는 영상이 76.74%의 성분을 포함하며, PCA변환 영상의 두 번째 누적 밴드에 해당하는 영상이 98.40%로 대부분의 성분자료가 두 번째 영상까지에 담긴 것을 알 수 있었다. 유형별 영상의 정량적 분류정확도 평가는 전체정확도, 생산자 및 사용자 정확도를 분석한 결과 유사한 패턴을 가지며, 특이한 사항은 정성적인 분류정확도 평가는 PCA변환 영상의 네 번째 밴드이상이 포함되어야 정확도가 확보되는 것으로 판단되나 정량적인 분류 정확도 평가에서는 PCA변환 영상의 두 번째 밴드까지를 포함하는 영상이 가장 높은 정확도를 나타내는 것을 알 수 있었다.