• Title/Summary/Keyword: SALL1 protein

Search Result 3, Processing Time 0.019 seconds

Variable expression observed in a Korean family with Townes-Brocks syndrome caused by a SALL1 mutation

  • Seo, Yeon Jeong;Lee, Ko Eun;Ko, Jung Min;Kim, Gu-Hwan;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.44-48
    • /
    • 2015
  • Townes-Brocks syndrome (TBS) is a rare genetic disorder characterized by the classic triad of congenital anomalies of the anus, thumbs, and ears, with variable expressivity. Additionally, renal malformations, cardiac anomalies, and endocrine and eye abnormalities can accompany TBS, although less frequently. TBS is inherited in an autosomal dominant fashion; however, about 50% of patients have a family history of TBS and the remaining 50% have de novo mutations. SALL1, located on chromosome 16q12.1, is the only causative gene of TBS. SALL1 acts as a transcription factor and may play an important role in inducing the anomalies during embryogenesis. Clinical features of TBS overlap with those of other multiple anomaly syndromes, such as VACTERL syndrome, Baller-Gerold syndrome, Goldenhar syndrome, cat eye syndrome, and Holt-Oram syndrome. Consequently, there are some difficulties in differential diagnosis based on clinical manifestations. Herein, we report a Korean family with two generations of TBS that was diagnosed based on physical examination findings and medical history. Although the same mutation in SALL1 was identified in both the mother and the son, they displayed different clinical manifestations, suggesting a phenotypic diversity of TBS.

Molecular Size and Distribution of Zinc-binding Ligands in Rat Pancreatic Tissue

  • Kwun, In-Sook;Donald Oberleas
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.3
    • /
    • pp.219-224
    • /
    • 1997
  • The pancreas is an important organ in the maintenance of zine homeostasis. The pancreatic tissue used in this study was obtained from rats fed varying levels of dietary Ca nd phytate followed by intraperitoneal {TEX}${65}^Zn${/TEX} injection. THe objective of this study was to determine the molecular size and distribution of compounds that may represent zinc-binding complexes in pancreatic tissue homogenates. The supernatant of the homogenized pancreatic tissue was separated using a Sephadex G-75 column with Tris buffer at pH 8.1. All subfractions were assayed for zinc, protein and {TEX}${65}^Zn${/TEX} activity. The elution of subfractions from pancreatic tissue homogenates showed a prominent peak corresponding to the high molecular weight protein standard (>66kd). A sall molecular weigth protein (<6.5kd), that was absorbed at 280nm, was also present: prominently in low Ca group, however not much as in high Ca group. These small compounds may combine weakly with zinc in pancreatic tissue an serve as zinc-binding ligands in pancreatic/biliary fluid. In the duodenum, these ligands dissociate zinc into an ionic form which becomes vulnerable to phytate complexation.

  • PDF