• Title/Summary/Keyword: SAGA

Search Result 324, Processing Time 0.024 seconds

Isolation and Structural Determination of a Complete Set of Intact Bacteriochlorophyll-d Homologs and Isomers from Green Sulfur Bacterium Chlorobium vibrioforme and Their Aggregation Properties in Hydrophobic Solvents

  • Mizoguchi, Tadashi;Saga, Yoshitaka;Tamiaki, Hitoshi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.344-346
    • /
    • 2002
  • Eight intact bacteriochlorophyll (BChl)-d homologs and isomers were isolated from a strain of green sulfur bacterium Chlorobium vibrioforme. All the molecular structures of the BChl-d components were fully determined by a combination of mass spectrometry and $^1$H-NMR spectroscopy. The aggregation behavior of the isomerically pure BChls-d in hydrophobic organic solvents was examined with respect to the stereoisomeric configuration at the C3$^1$ position as well as the bulkiness of the C8 and C12 side-chains by using electronic- absorption spectroscopy.

  • PDF

Design and Implementation of Community-based Hazard Mapping Support System Based on Mobile Cloud in Traditional Towns with Local Heritage

  • Min, Byung-won
    • Journal of Platform Technology
    • /
    • v.6 no.3
    • /
    • pp.3-9
    • /
    • 2018
  • This paper describes the design and trial development of a system that supports continuous hazard mapping by local residents in their daily life. We performed an interview survey to design our system in a model traditional town in Saga Prefecture, Japan. The results show that despite continued efforts, many practical problems remain and residents feel unsafe. Considering these results, we designed and developed a unique information and communication technology-based support system that contributes to community-based disaster prevention and reduction. The continuous resident participation and posting design are the core concept for our community-based approach. Our system continues to support making a hazard map by integrating the community-based hazard information. Local residents register information (disaster types, risk level, photographs, comments, positional information) about locations that could be dangerous in a disaster. In addition, our system enables information sharing through a Web server. We expect that this information sharing will allow local hazard information for each district to be used.

Studies on Igniter Jet Turbulence Effect on the Ballistics of Solid Rocket Motors

  • Sanal Kumar V.R.;Kim H. D.;Setoguchi T.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.57-60
    • /
    • 2005
  • A diagnostic investigation is carried out to examine the igniter jet turbulence effects on the internal ballistics of solid rocket motors with divergent port. The numerical studies have been carried out with the help of a two dimensional k-omega turbulence model. It was inferred that increasing the igniter jet turbulence intensity is a possible way to decrease the pressure spike and pressurization rate, marginally during the ignition transient, by altering the location of the secondary ignition in solid rocket motors with non-uniform port.

  • PDF

Controller design to diminish oscillation and steady state error in water temperature systems with drive delay

  • Nakamura, Masatoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1888-1893
    • /
    • 1991
  • Systematic design of a controller for a water temperature system was considered, with the intention of devising an accurate control experiment. The results of an experiment using a water temperature system based on the pole placement regulator showed water temperature oscillation and steady state error. This paper proposed a. method for eliminating both the oscillation and the steady state error. The oscillation was eliminated by a drive delay compensation technique, in which a future state value of the system was predicted through a real time computer simulation. The steady state error was eliminated by an steady state error correction technique, in which an actual steady state heatrate in the system model was replaced by an imaginary heatrate. By combining these two techniques, we obtained an experimental result for water temperature control of 0.01 (.deg. C) accuracy. Furthermore, the proposed method was evaluated relatively by comparing the experimental results using several other methods and proved to be the most accurate and convenient control method for the delay system.

  • PDF

STRENGTH CHANGES OF SURROUNDING CLAY DUE TO SOIL-CEMENT COLUMN INSTALLATION

  • Miura, Norihiko
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1997.10a
    • /
    • pp.19-36
    • /
    • 1997
  • This paper discusses the reduction and subsequent recovery and increase of shear strength of clay in the vicinity of soil-cement column. Laboratory and field tests were conducted to investigate the effects on surrounding clay during and after soil-cement column installation in soft Ariake clay. Discussions were made on the mechanism of strength changes of clay by considering the thixotropic recovery, reconsolidation effect, penetration of cement slurry and diffusion of exchangeable cations. On the basis of field and laboratory observations, 10 days after column installation, the decreased shear strength of surrounding clay during mixing was recovered and 30 days later, shear strength of surrounding clay increased 30% by average. Therefore, it is recommended that the increase of shear strength of clay can be taken into consideration in the bearing capacity and stability analysis of the composite ground.

  • PDF

Visualization of Hysteresis Phenomenon of Shock Waves in Supersonic Internal Flow

  • Suryan, Abhilash;Shin, Choon-Sik;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.2
    • /
    • pp.31-39
    • /
    • 2010
  • Hysteresis is an effect by which the order of previous events influences the order of subsequent events. Hysteresis phenomenon of supersonic internal flows with shock waves has not yet been clarified satisfactorily. In the present study, experiments are carried out on internal flow in a supersonic nozzle to clarify the hysteresis phenomena for the shock waves. Flow visualization is carried out separately on the straight and divergent channels downstream of the nozzle throat section. Results obtained were compared with numerically simulated data. The results confirmed hysteresis phenomenon for shock wave in the Laval nozzle at a certain specific condition. The relationship between hysteresis phenomenon and the range of the rate of change of pressure ratio with time was shown experimentally. The existence of hysteretic behavior in the formation, both the location and strength, of shock wave in the straight part of the supersonic nozzle with a range of pressure ratio has also been confirmed numerically.

Comparison of Objective Functions for Feed-forward Neural Network Classifiers Using Receiver Operating Characteristics Graph

  • Oh, Sang-Hoon;Wakuya, Hiroshi
    • International Journal of Contents
    • /
    • v.10 no.1
    • /
    • pp.23-28
    • /
    • 2014
  • When developing a classifier using various objective functions, it is important to compare the performances of the classifiers. Although there are statistical analyses of objective functions for classifiers, simulation results can provide us with direct comparison results and in this case, a comparison criterion is considerably critical. A Receiver Operating Characteristics (ROC) graph is a simulation technique for comparing classifiers and selecting a better one based on a performance. In this paper, we adopt the ROC graph to compare classifiers trained by mean-squared error, cross-entropy error, classification figure of merit, and the n-th order extension of cross-entropy error functions. After the training of feed-forward neural networks using the CEDAR database, the ROC graphs are plotted to help us identify which objective function is better.

NUMERICAL ANALYSIS OF INTERACTION BETWEEN SUPERSONIC JET AND PERPENDICULAR PLATE

  • Yasunobu T;Matsuoka T;Kashimura H;Setoguchi T
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.39-44
    • /
    • 2005
  • The numerical investigation of the interaction between the underexpanded supersonic jet and the perpendicular plate is carried out using the TVD numerical method. The wave structure in the flowfield and the pressure and temperature distributions on the plate surface are obtained by the numerical analysis. Especially, the influence of self-induced flow oscillation caused by the impinging jet and the characteristic of impinging jet are shown. From the result of the numerical analysis, it is concluded that the pressure and the temperature fluctuations on the plate surface strongly depends on the pressure ratio in the flowfield and the position of plate.

The Effects of Nonequilibrium Condensation on Shock/Boundary Layer Interaction

  • Kim, Heuy-Dong;Lee, Kwon-Hee;Toshiaki. Setoguchi
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.788-795
    • /
    • 2001
  • The effects of nonequilibrium condensation on the shock boundary layer interaction over a transonic bump model were investigated experimentally and numerically. An experiment was conducted using a supersonic indraft wind tunnel. A droplet growth equation was incorporated into two-dimensional Navier-Stokes equation systems. Computations were carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. Computation compared with the experimental results. Nonequilibirum condensation suppressed the boundary layer separation and the pressure fluctuations due to the shock boundary layer interaction. Especially the nonequilbrium condensation was helpful to suppress the high frequency components of the pressure fluctuations.

  • PDF