• Title/Summary/Keyword: SAD algorithm

Search Result 118, Processing Time 0.024 seconds

The Algorithm of Brightness Control Disparity Matching in Stereoscopic (스테레오 스코픽에서 밝기 조정 정합 알고리즘)

  • Song, Eung-Yeol;Kim, Young-Seop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.95-100
    • /
    • 2009
  • This paper presents an efficient disparity matching, using sum of absolute difference (SAD) and dynamic programming (DP) algorithm. This algorithm makes use of one of area-based algorithm which is the absolute sum of the pixel difference corresponding to the window size. We use the information of the right eye brightness (B) and the left eye brightness to get an best matching results and apply the results to the left eye image using the window go by the brightness of the right eye image. This is that we can control the brightness. The major feature of this algorithm called SAD+DP+B is that although Root Mean Square (RMS) performance is slightly less than SAD+DP, due to comparing original image, its visual performance is increased drastically for matching the disparity map on account of its matching compared to SAD+DP. The simulation results demonstrate that the visual performance can be increased and the RMS is competitive with or slightly higher than SAD+DP.

  • PDF

An Efficient Multi-level Successive Elimination Algorithm using the Locality in Block (동영상의 블록내 지역성을 이용하는 효율적인 다단계 연속 제거알고리즘)

  • Jung, Soo Mok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.179-187
    • /
    • 2009
  • In this paper, an efficient multi-level successive elimination algorithm using the locality in block was proposed for motion estimation. If SAD(sum of absolute difference) is calculated from large absolute difference values to small absolute difference values, SAD is increased rapidly. So, partial distortion elimination in SAD calculation can be done very early. Hence, the computations of SAD calculation can be reduced. In this paper, an efficient algorithm to calculate SAD from large absolute difference values to small absolute difference values by using the locality in block. Experimental results show that the proposed algorithm is an efficient algorithm with 100% motion estimation accuracy for the motion estimation of motion vectors.

Fast motion estimation scheme based on Successive Elimination Algorithm for applying to H.264 (H.264에 적용을 위한 SEA기반 고속 움직임 탐색 기법)

  • Lim Chan;Kim Young-Moon;Lee Jae-Eun;Kang Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.151-160
    • /
    • 2005
  • In this paper, we propose a new fast motion estimation algorithm based on successive elimination algorithm (SEA) which can dramatically reduce heavy complexity of the variable block size motion estimation in H.264 encoder. The proposed method applies the conventional SEA in the hierarchical manner to the seven block modes. That is, the proposed algorithm can remove the unnecessary computation of SAD by means of the process that the previous minimum SAD is compared to a current SAD for each mode which is obtained by accumulating sum norms or SAD of $4\times4$ blocks. As a result, we have tighter bound in the inequality between SAD and sum norm than in the ordinary SEA. If the basic size of the block is smaller than $4\times4$, the bound will become tighter but it also causes to increase computational complexity, specifically addition operations for sum norm. Compared with fast full search algorithm of JM of H.264, our algorithm saves 60 to $70\%$ of computation on average for several image sequences.

A Fast Search Algorithm for Sub-Pixel Motion Estimation (부화소 움직임 추정을 위한 고속 탐색 기법)

  • Park, Dong-Kyun;Jo, Seong-Hyeon;Cho, Hyo-Moon;Lee, Jong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.26-28
    • /
    • 2007
  • The motion estimation is the most important technique in the image compression of the video standards. In the case of next generation standards in the video codec as H.264, a high compression-efficiency can be also obtained by using a motion compensation. To obtain the accurate motion search, a motion estimation should be achieved up to 1/2 pixel and 1/4 pixel uiuts. To do this, the computational complexity is increased although the image compression rate is increased. Therefore, in this paper, we propose the advanced sub-pixel block matching algorithm to reduce the computational complexity by using a statistical characteristics of SAD(Sum of Absolute Difference). Generally, the probability of the minimum SAD values is high when searching point is in the distance 1 from the reference point. Thus, we reduced the searching area and then we can overcome the computational complexity problem. The main concept of proposed algorithm, which based on TSS(Three Step Search) method, first we find three minimum SAD points which is in integer distance unit, and then, in second step, the optimal point is in 1/2 pixel unit either between the most minimum SAD value point and the second minimum SAD point or between the most minimum SAD value point and the third minimum SAD point In third step, after finding the smallest SAD value between two SAD values on 1/2 pixel unit, the final optimized point is between the most minimum SAD value and the result value of the third step, in 1/2 pixel unit i.e., 1/4 pixel unit in totally. The conventional TSS method needs an eight.. search points in the sub-pixel steps in 1/2 pixel unit and also an eight search points in 1/4 pixel, to detect the optimal point. However, in proposed algorithm, only total five search points are needed. In the result. 23 % improvement of processing speed is obtained.

  • PDF

A Fast SAD Algorithm for Area-based Stereo Matching Methods (영역기반 스테레오 영상 정합을 위한 고속 SAD 알고리즘)

  • Lee, Woo-Young;Kim, Cheong Ghil
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.8-12
    • /
    • 2012
  • Area-based stereo matchng algorithms are widely used for image analysis for stereo vision. SAD (Sum of Absolute Difference) algorithm is one of well known area-based stereo matchng algorithms with the characteristics of data intensive computing application. Therefore, it requires very high computation capabilities and its processing speed becomes very slow with software realization. This paper proposes a fast SAD algorithm utilizing SSE (Streaming SIMD Extensions) instructions based on SIMD (Single Instruction Multiple Data) parallism. CPU supporing SSE instructions has 16 XMM registers with 128 bits. For the performance evaluation of the proposed scheme, we compare the processing speed between SAD with/without SSE instructions. The proposed scheme achieves four times performance improvement over the general SAD, which shows the possibility of the software realization of real time SAD algorithm.

Optimal Scheduling of SAD Algorithm on VLIW-Based High Performance DSP (VLIW 기반 고성능 DSP에서의 SAD 알고리즘 최적화 스케줄링)

  • Yu, Hui-Jae;Jung, Sou-Hwan;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.12
    • /
    • pp.262-272
    • /
    • 2007
  • SAD (Sum of Absolute Difference) algorithm is the most frequently executing routine in motion estimation, which is the most demanding process in motion picture encoding. To enhance the performance of motion picture encoding on a VLIW processor, an optimal implementation of SAD algorithm on VLIW processor should be accomplished. In this paper, we propose an implementation of optimal scheduling of SAD algorithm with conditional branch on a VLIW-based high performance DSP. We first transform the nested loop with conditional branch of SAD algorithm into a single loop with conditional branch which has a large enough loop body to utilize fully the ILP capability of VLIW DSP and has a conditional branch to make the escape from loop to be achieved as soon as possible. And then we apply a modulo scheduling technique to the transformed single loop. We test the proposed implementation on TMS320C6713, and analyze the code size and performance with respect to processing time. Through experiments, it is shown that the SAD implementation proposed in this paper has small code size appropriate for embedded applications, and the H.263 encoder with the proposed SAD implementation performs better than other H.263 encoder with other SAD implementations.

Implemenation of an ASIP for acceleration SAD operation (SAD 연산의 가속을 위한 멀티미디어 코프로세서 구현)

  • Jo, Jung-Hyun;Jeong, Ha-Young
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.809-810
    • /
    • 2006
  • An H.264 algorithm is commonly used for video compression applications. This algorithm requires a large number of data computations, for example, the sum of absolute difference (SAD) operation. We analyzed H.264 reference encoding workloads. The H.264 encoding program has 8.78% SAD operation. The SAD operation is to sum up 16 difference-values in H.264 $4{\times}4$ sub-blocks. In order to accelerate SAD operations, we implemented an application specific instruction-set processor (ASIP) that can execute SAD and data transfer instructions. The proposed coprocessor has an absolute value generator and a carry save adder (CSA) unit to sum up 8 difference-values per one clock cycle. We completed SAD operation in 2 clock cycles. Experimental results show that the performance is improved by 34% of total execution time.

  • PDF

Heuristic Designs of SAD Correlation Algorithm for Vision System (비전 시스템 구현을 위한 SAD 정합 알고리즘의 변형)

  • Yi, Jong-Su;Kim, Jun-Seong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.61-66
    • /
    • 2010
  • A stereo vision, which is based on two or more images taken from different view points, is able to build three dimensional maps of its environment having various applications including robots and home networks. SAD algorithm, which is based on area-based correlation, is widely used since its regular structure provide abundant parallelism. In this paper, we present heuristic designs of SAD algorithm to meet the demands on accuracy and resource usages in various applications. The disparity abridgement and the window abridgement algorithms can be used for vision systems in low cost and small size. The window shape algorithm can be applicable when object are in specific shapes. The adaptive window algorithm work well when accuracy is the primary concern.

Modified 3-step Search Motion Estimation Algorithm for Effective Early Termination (효과적인 조기 중단 기법을 위한 변형된 3단계 탐색 움직임 추정 알고리즘)

  • Yang, Hyeon-Cheol;Lee, Seong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.70-77
    • /
    • 2010
  • Motion estimation occupies most of the required computation in video compression, and many fast search algorithms were propsoed to reduce huge computation. SAD (sum-of-absolute difference) calculation is the most computation-intensive process in the motion estimation. Early termination is widely used in SAD calculation, where SAD calculation is terminated and it proceeds to next search position if partial SAD during SAD calculation exceeds current minimum SAD. In this paper, we proposed a modified 3-step search algorithm for effective early termination where only search order of search positions are adaptive rearranged. Simulation results show that the proposed motion estimation algorithm reduces computation by 17~30% over conventional 3-step search algorithm without extra computation, while maintaining same performance.

Efficient Computing Algorithm for Inter Prediction SAD of HEVC Encoder (HEVC 부호기의 Inter Prediction SAD 연산을 위한 효율적인 알고리즘)

  • Jeon, Sung-Hun;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.397-400
    • /
    • 2016
  • In this paper, we propose an efficient algorithm for computing architecture for high-performance Inter Prediction SAD HEVC encoder. HEVC Motion Estimation (ME) of the Inter Prediction is a process for searching for the currently high prediction block PU and the correlation in the interpolated reference picture in order to remove temporal redundancy. ME algorithm uses full search(FS) or fast search algorithm. Full search technique has the guaranteed optimal results but has many disadvantages which include high calculation and operational time due to the motion prediction with respect to all candidate blocks in a given search area. Therefore, this paper proposes a new algorithm which reduces the computational complexity by reusing the SAD operation in full search to reduce the amount of calculation and computational time of the Inter Prediction. The proposed algorithm is applied to an HEVC standard software HM16.12. There was an improved operational time of 61% compared to the traditional full search algorithm, BDBitrate was decreased by 11.81% and BDPSNR increased by about 0.5%.

  • PDF