• 제목/요약/키워드: S. Cerevisiae

검색결과 924건 처리시간 0.029초

Saccharomyces cerevisiae와 Pichia stipitis를 이용한 오탄당과 육탄당으로부터 에탄올 생산에 관한 비교연구 (Comparative Study on Ethanol Production with Pentose and/or Hexose by Saccharomyces cerevisiae and/or Pichia stipitis)

  • 김중곤;안정훈
    • 생명과학회지
    • /
    • 제21권3호
    • /
    • pp.335-340
    • /
    • 2011
  • 포도당과 자일로스는 자연계에서 가장 풍부한 물질이며 이들은 효모에 의해 에탄올로 전환될 수 있다. 본 연구에서는 Saccharomyces cerevisiae와 Pichia stipitis을 이용하여 분리배양, 공동배양 그리고 순차배양 등의 조합을 통해 가장 효과적인 발효의 방법을 찾고자 하였다. 분리배양에서 S. cerevisiae은 29.4 g/l의 포도당을 발효하여 14.5 g/l의 에탄올을 생산한 반면에 자일로스를 이용하지 못했다. 그렇지만 P. stipitis은 포도당뿐만 아니라 자일로스도 분해하여 각각 포도당 29.4 g/l로부터 11.9 g/l의 에탄올을, 자일로스 29.0 g/l로부터 11.6 g/l의 에탄올을 생산하였다. 포도당과 자일로스 혼합배양에서, S. cerevisiae은 13.4 g/l의 에탄올을 생산한 반면에 P. stipitis은 21.1 g/l의 에탄올을 생산하였다. 공동배양과 순차배양에서, 공동배양이 18.6 g/l, 순차배양이 12.4 g/l의 에탄올을 생산하여 공동배양이 더 효과적인 것으로 나타났다. 두 효모의 생장에서 영양분의 효과를 보기 위해 yeast nitrogen base (YNB)을 S. cerevisiae가 포도당을 소모한 시점에 첨가하니 자일로스의 소비량과 미생물의 성장이 증가하였고 54.6 g/l의 당 혼합배양액에서 22.5 g/l의 에탄올을 생산하여 0.41 g/g의 수득율을 나타내었다.

해외 기술: 효모 Saccharomyces cerevisiae의 에탄올 스트레스 반응과 에탄올 내성 (New Technology: The Ethanol Stress Response and Ethanol Tolerance of Saccharomyces cerevisiae)

  • 김재호
    • 식품기술
    • /
    • 제23권2호
    • /
    • pp.214-219
    • /
    • 2010
  • Saccharomyces cerevisiae는 전통적으로 알코올 음료와 bioethanol 생산에 이용되지만, 발효가 진행되는 동안 효모의 에탄올 생성은 에탄올의 축적에 의한 충격으로 세포활성에 손상을 초래한다. 본 연구는 S. cerevisiae의 에탄올 스트레스 반응과 에탄올 내성의 분자적 기초에 관해 수행되었으며, 에탄올 스트레스가 진행되는 동안 효모의 에탄올 생성 향상을 위한 유전 공학 전략의 수립에 활용될 수 있다. 이전의 연구들은 유전자 발현에 대한 에탄올 스트레스의 충격이 환경적 영향을 받기 때문에 다양한 균주와 조건들에 관해 이루어졌다. 그러나 에탄올 공격에 의해 영향을 받은 gene ontology 범주에서의 일부 공통점은 S. cerevisiae의 에탄올 스트레스 반응이 해당과정 및 미토콘드리아 기능과 관련된 유전자 발현의 증가와 에너지가 요구되는 성장과정과 관련된 유전자의 발현 감소에 따라 에너지 생산에 제약 받음을 의미한다. Genomewide screens를 이용한 연구는 vacuole function의 유지가 에탄올 내성에 대해 중요함을 암시한다. 아마도 단백질 turnover와 이온 항상성 유지에 이 세포기관의 역할이 중요하기 때문인 것으로 사료된다. 특히 에탄올 스트레스가 일어날 때 핵 내 Asr1과 Rat8의 축적은 비록 이 가설이 논란이 많은 주제로 남아있지만 S. cerevisiae가 에탄올 스트레스에 대한 특별한 반응을 가지고 있음을 의미한다.

  • PDF

Saccharomyces cerevisiae KNU5377의 NaCl에 대한 적응이 고온내성과 알코올발효에 미치는 영향 (Effect of NaCl Adaptation on the Thermotolerance and Alcohol Fermentation in Saccharomyces cerevisiae KNU5377.)

  • 백상규;윤혜선;사금희;김일섭;이인구;박희동;유춘발;진익렬
    • 한국미생물·생명공학회지
    • /
    • 제31권1호
    • /
    • pp.63-68
    • /
    • 2003
  • 구성적으로 고온내성과 고온발효능을 가지고 있는 Saccharomyces cerevisiae KNU5377 균주는 YPD 배지에 0.5M NaCl을 첨가한 YPDS 배지에서 자란 경우, 일반 YPD에서 성장한 지수성장기 세포에서 약 80%의 생존율을 보이던 고온내성이 20% 생존율을 보이고, 또한 약 8.5%정도의 알코올 생산량을 보이던 것이 6%수준으로 감소하여 대조균주와 유사한 고온발효능과 고온내성도를 보였다. 즉 구성적으로 아주 높은 내성도와 발효능을 가진 이 균주가 대조균주와 동질화되는 현상이 발생한 것이다. 이것은 S. cerevisiae KNU5377의 고온내성과 고온발효능의 원인이 이 균주 특유의 NaCl adaptation 과정과 밀접한 관계가 있음을 암시하는 것이다. 또한 이 균주의 고온발효능은 heat adaptation에 의해서 그 알코올 생산량의 증가폭 또한 대조 균주보다 2배 이상을 보이므로, 이 S. cerevisiae KNU5377가 가지는 생리적 특징이 최소한 대조균주에 비해서는 heat adaptation의 효과를 더 크게 볼 수 있는 시스템을 가지고 있음을 알 수 있었다. 이러한 특성들은 그 균주 특이적 현상의 원인을 밝힐 수 있는 중요한 단서로서 활용이 가능하며, 이 균주가 충분히 고온하에서의 알콜 생산 균주가 될 수 있음을 보여주고 있다.

효모에 따른 약주의 품질특성 2. 발효과정중 약주의 품질특성 (Characterization of Yakju Prepared with Yeasts from Fruits 2. Quality Characteristics of Yakju during Fermentation)

  • 양지영;신귀례;김병철;김용두
    • 한국식품영양과학회지
    • /
    • 제28권4호
    • /
    • pp.801-804
    • /
    • 1999
  • 전보에서 과실로부터 분리한 에탄올 생성능과 향기생성능이 우수한 2종의 균주(Saccharomyces cerevisiae S-2와 Saccharomyces cerevisiae S-6)와 Saccharomyces cerevisiae IFO 1950을 이용하여 약주 제조시 주모로 첨가하여 약주의 품질특성을 분석하고 효모가 약주의 품질에 미치는 영향에 대하여 조사하였다. Saccharomyces c cerevisiae S-2, Saccharomyces cerevisiae S-6과 Sac­charomyces cerevisiae IFO 1950의 발효과정 중 pH의 변화는 경시적으로 낮아지는 경향을 보였고, 발효 8일 후에는 S-2균주는 pH 3.0, S-6균주는 pH 2.9, IFO 1950은 pH 3 3.3으로 비슷한 경향을 나타내었다. 산도의 변화는 발효 개시후 완만한 증가를 보이다가 발효 8일 이후에는 S-2는 4.8ml, IFO 1950은 4.3ml를 나타내었다. 그러 나 S-6균주는 8.7ml로 다른 균주에 비해 거의 두배정도 높은 산도를 나타내었다. 이것은 S-6의 citric acid와 lactic acid의 함량이 다른 두 균주에 비해 높은 함량을 나타낸 것에 원인을 찾을 수 있을 것이다. 세가지의 균주에서 발효된 약주에서는 공통적으로 glucose와 maltose가 검출되었고 S-6균주의 약주는발효기간전체에 걸쳐 유리당이 검출 되어 다른 두 균주에 비해 발효능이 떨어진다는 것을 알 수 있었고, 이것은 에탄올 함량변화에서도 확인할 수 있었다.

  • PDF

출아효모에서 xylitol dehydrogenase (XYL2)의 최적 생산을 위한 발현 시스템 구축 (Expression System for Optimal Production of Xylitol Dehydrogenase (XYL2) in Saccharomyces cerevisiae)

  • 정회명;김연희
    • 생명과학회지
    • /
    • 제27권12호
    • /
    • pp.1403-1409
    • /
    • 2017
  • 본 연구에서는 lignocellulosic biomass (xylose)의 부가가치를 높이고 효율적인 활용을 위해 xylitol dehydrogenase를 Saccharomyces cerevisiae 숙주세포에서 분비 생산하고자 하였다. 먼저 S. cerevisiae와 Pichia stipitis유래 XYL2 유전자(S.XYL2 and P.XYL2 gene)의 발현 시스템을 구축하기 위하여 GAL10 promoter와 ADH1 promoter 하류에 각각 mating factor ${\alpha}$ ($MF{\alpha}$) signal sequence와 XYL2유전자를 가진 $pGMF{\alpha}-S.XYL2$, $pGMF{\alpha}-P.XYL2$, $pAMF{\alpha}-S.XYL2$$pAMF{\alpha}-P.XYL2$ plasmid를 구축하였다. 각각의 plasmid는 S. cerevisiae $SEY2102{\Delta}trp1$ 균주에 형질전환되었고, 생산된 xylitol dehydrogenase의 활성을 조사해 본 결과, GAL10 promoter가 ADH1 promoter보다 XYL2유전자의 발현에 더욱 적합함을 확인 할 수 있었다. 또한 P. stipitis 유래의 xylitol dehydrogenase 효소 활성이 S. cerevisiae 유래의 효소 활성보다 2배 이상 더 높았으며, 활성의 증가를 위해 두 유전자 모두 cofactor로 $NAD^+$에 의존한다는 것을 확인하였다. 재조합 유전자가 가지는 분비서열에 의해 $SEY2102{\Delta}trp1/pGMF{\alpha}-P.XYL2$ 균주에서 xylitol dehydrogenase의 약 77%는 periplasmic space로 분비 발현되었음을 알 수 있었다. 또한 재조합 xylitol dehydrogenase의 효율적인 생산을 위해 탄소원의 영향을 조사해본 결과, glucose 단독보다 glucose와 xylose를 혼합 배양한 경우에서 효소활성이 최대 41% 정도 증가되었음을 확인 할 수 있었다. 본 연구에서 최적화한 발현 시스템 및 배양 조건은 xylose 뿐만 아니라 다양한 biomass를 이용한 유용물질 생산을 위한 관련 단백질의 발현 분비시스템 구축 및 대량생산에도 응용될 수 있을 것이라 생각된다.

해양 심층수 첨가에 따른 알콜발효 효모의 증식 변화 (Change in Growth of alcohol Fermentation Yeast with Addition of Deep Seawater)

  • 김미림;정지숙;이기동
    • 한국식품저장유통학회지
    • /
    • 제10권3호
    • /
    • pp.417-420
    • /
    • 2003
  • 해양 심층수 첨가에 따른 효모 발효력과 심층수 첨가 최적 농도를 알아보기 위하여 효모균주 9종에 대하여 증식을 조사하였다. 효모균주는 Saccharomyces cerevisiae 10호, 11호, 12호, 901, RCY, Sacch.cerwisiae ktwef DJ97, Saccharomyces cerevisiae YJK, JK99, CMY-28 등이었으며, 해양 심층수는 경도 250, 500, 1000으로 조절하였고 대조군과 함께 증식력을 측정하였다 Saccharomyces cerevisiae 12호 균주가 심층수 경도 500인 시험군에서 증식력도 높았으며, Sacch. cerevisiae 901에서는 경도 1000인 시험군이 대조군에 비해 증식력이 높게 나타나 효모균주의 종류와 심층수의 첨가량에 따라 적응력이 강한 균주가 있었다. 당농도와 심층수 첨가량에 따른 Sacch. cerevisiae kluyevery DJ97의 발효력은 심층수 경도 200의 당 10% 첨가군에서 가장 잘 증식하였다.

S. cerevisiae를 이용한 시안센서의 개발 (Development of Cyanide Sensor Using S. cerevisiae)

  • 김종민;이현우
    • KSBB Journal
    • /
    • 제11권6호
    • /
    • pp.669-675
    • /
    • 1996
  • 간단한 조작으로 시안화물을 신속하게 계측할 수 있는 센서의 개발을 목적으로 하여 미생물과 산소전극을 이용한 시안센서의 개발을 연구하였다. 산소전극에 S. cerevisiae를 흡착 고정화한 막을 부착하여 막형 시안센서를 제작하고 시료용액중의 시 안이온농도를 O~1.00ppm이 되게 시안을 첨가하면 서 전류값 변화를 살펴본 결과 시안농도 0.10~1.00ppm의 범위에서 응답이 확인되었으며 고정화 직후의 호흡활성은 약 하루정도 유지되었다. S. ceremSlae를 고정화한 키토-펼 HP-5020을 사용하여 반응기형 시안센서를 제작하고 막형 시안센서와 동일하게 시안이온농도 O~1.00ppm 용액의 전 류값 변화를 살펴본 결과 0.10~ 1.00ppm의 범위에서 응답이 확인되었으며 고정화 직후 90%의 호흡활 성이 16일간 유지되었다. 반응기형 시안샌서의 반응기 크기의 영향을 검토 한 결과, 반응기의 최적 체적이 존재한다는 사실을 알 수 있었다.

  • PDF

YEp 및 YIp 벡터에 의(依)한 Saccharomyces cerevisiae의 Cotransformation (Cotransformation of Saccharomyces cerevisiae with Yip and Yep Vectors)

  • 이승범;이인구
    • Current Research on Agriculture and Life Sciences
    • /
    • 제4권
    • /
    • pp.36-41
    • /
    • 1986
  • 대장균(大腸菌)과 효모(酵母)의 셔틀 벡터인 YIp, YRp, YEp를 S. cerevisiae MC 16, DBY747에 형질전환(形質轉換)시켰다. 이들 벡터들을 대장균(大腸菌)에 형질전환(形質轉換)시켰을 때 그 빈도(頻度)가 YIp5, YIp26, YEp13, YRp7에서 각각 $5.1{\times}10^{-4}$, $1.5{\times}10^{-3}$, $3{\times}10^{-3}$, $1.3{\times}10^{-3}$으로 나타났다. YEp13을 MC16과 DBY747에 Ito 법(法)으로 형질전환(形質轉換)시켰을 때 MC16, DBY747에서의 빈도(頻度) 각각 $3.3{\times}10^{-4}$, $1.2{\times}10^{-4}$으로 나타났다. DBY747을 수용세포(受容細胞)로 하여 YRp7과 YIp26을 환상(環狀)으로 각각 형질전환(形質轉換)시켰을 때 그 빈도(頻度)는 각각 $3{\times}10^{-6}$, $6{\times}10^{-8}$이하로 나타났다. DBY747을 수용세포(受容細胞)로 하여 YEp13과 YIp26을 선상(線狀)으로 절단하여 $Li^+$ 처리(處理)한 S. cerevisiae에 cotransformation을 하였을 때 YIp26+YEp13 ($Leu^+$, $Ura^+$)의 cotransformant는 $1{\times}10^{-5}$ 빈도(頻度)가 나왔으며 YIp26과 YEp13에 대한 각각의 빈도(頻度)는 $10^{-7}$ 이하, $5{\times}10^{-5}$ 빈도(頻度)로 나타났다. 또 YIp5와 YEp13, YIp26과 YRp7을 원형질체화(原形質體化)한 S. cerevisiae DBY747에 cotransformation 하였을 때 빈도(頻度)는 YIp5+YEp13은 $4{\times}10^{-6}$으로 나오고 YIp26+YRp7에서 $1.5{\times}10^{-6}$으로 나타났다.

  • PDF

Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose

  • Lee, Won-Heong;Jin, Yong-Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권9호
    • /
    • pp.1649-1656
    • /
    • 2017
  • In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathway-a phosphorolytic pathway based on a mutant cellodextrin transporter (CDT-1 (F213L)) and cellobiose phosphorylase (SdCBP)-was investigated by comparing with a hydrolytic pathway based on the same transporter and an intracellular ${\beta}$-glucosidase (GH1-1) for their SSF performances under various conditions. Whereas the phosphorolytic and hydrolytic cellobiose-fermenting S. cerevisiae strains performed similarly under the anoxic SSF conditions, the hydrolytic S. cerevisiae performed slightly better than the phosphorolytic S. cerevisiae under the microaerobic SSF conditions. Nonetheless, the phosphorolytic S. cerevisiae expressing the mutant CDT-1 showed better ethanol production than the glucose-fermenting S. cerevisiae with an extracellular ${\beta}$-glucosidase, regardless of SSF conditions. These results clearly prove that introduction of the intracellular cellobiose metabolic pathway into yeast can be effective on cellulosic ethanol production in SSF. They also demonstrate that enhancement of cellobiose transport activity in engineered yeast is the most important factor affecting the efficiency of SSF of cellulose.

Observation of Cellodextrin Accumulation Resulted from Non-Conventional Secretion of Intracellular β-Glucosidase by Engineered Saccharomyces cerevisiae Fermenting Cellobiose

  • Lee, Won-Heong;Jin, Yong-Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.1035-1043
    • /
    • 2021
  • Although engineered Saccharomyces cerevisiae fermenting cellobiose is useful for the production of biofuels from cellulosic biomass, cellodextrin accumulation is one of the main problems reducing ethanol yield and productivity in cellobiose fermentation with S. cerevisiae expressing cellodextrin transporter (CDT) and intracellular β-glucosidase (GH1-1). In this study, we investigated the reason for the cellodextrin accumulation and how to alleviate its formation during cellobiose fermentation using engineered S. cerevisiae fermenting cellobiose. From the series of cellobiose fermentation using S. cerevisiae expressing only GH1-1 under several culture conditions, it was discovered that small amounts of GH1-1 were secreted and cellodextrin was generated through trans-glycosylation activity of the secreted GH1-1. As GH1-1 does not have a secretion signal peptide, non-conventional protein secretion might facilitate the secretion of GH1-1. In cellobiose fermentations with S. cerevisiae expressing only GH1-1, knockout of TLG2 gene involved in non-conventional protein secretion pathway significantly delayed cellodextrin formation by reducing the secretion of GH1-1 by more than 50%. However, in cellobiose fermentations with S. cerevisiae expressing both GH1-1 and CDT-1, TLG2 knockout did not show a significant effect on cellodextrin formation, although secretion of GH1-1 was reduced by more than 40%. These results suggest that the development of new intracellular β-glucosidase, not influenced by non-conventional protein secretion, is required for better cellobiose fermentation performances of engineered S. cerevisiae fermenting cellobiose.