• Title/Summary/Keyword: S-wave velocity

Search Result 857, Processing Time 0.029 seconds

Physical and Acoustic Properties of Sediment around the Yeosu Sound (여수해만 주변해역 퇴적물의 물리적 및 음향학적 성질)

  • KIM Gil-Young;SUNG Jun-Young;KIM Dae-Choul;KIM Jeong-Chang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.434-444
    • /
    • 1994
  • Physical and acoustic properties of sediment core samples recovered from the Kwangyang Bay, the Yeosu Sound, and the inner shelf of central South Sea, Korea were investigated. Compressional wave velocity, density, porosity, and shear strength were measured at 10cm interval's along the core depth. Sediment texture(grain size, sand, silt, and clay contents) were also measured and correlated with the physical properties(density, porosity, and shear strength). The physical and acoustic properties of the sediment changed gradually from the Kwangyang Bay to the shelf area in accordance with the distance from the input source of the terrigenous sediment. The Yeosu Sound acted as a route of sediment transport from the estuary(the Seomjin River) to the shelf and vice versa. The physical and acoustic properties of the Yeosu Sound sediment conformed to an intermediate stage between river mouth and shelf areas. These results can be utilized to trace the influence of the Seomjin River on the so-called mud belt of Korea.

  • PDF

Use of the Color Doppler Ultrasonography for the Evaluation of the Hemodynamic Changes of the Cranial Pancreaticoduodenal Arterial Flow in Experimentally Induced Acute Pancreatitis Dogs (실험적으로 유발된 급성 췌장염 견에서 컬러도플러 초음파를 이용한 전방 십이지장 동맥 혈류의 혈역학적 변화에 대한 평가)

  • Lee, Hae-Woon;Um, Ki-Dong;Sung, Yoon-Sang;Lee, Jung-Min;Lee, Jong-Won;Lee, Geun-Woo;Kim, Myung-Chul;Kim, Doo;Park, Sun-Il
    • Journal of Veterinary Clinics
    • /
    • v.20 no.3
    • /
    • pp.334-340
    • /
    • 2003
  • For the study of the hemodynamic changes of the cranial pancreaticoduodenal arterial flow(cPDAF) in the dog with acute pancreatitis, acute pancreatitis was experimentally induced in 10 dogs by the injection of oleic acid into the accessory pancreatic duct. The parameters of cPDAF were measured by transcutaneous pulsed-wave Doppler ultrasonography. The hemodynamic changes included resistive indexe(RI), pulsatility index(PI) and maximum velocity (Vmax). Ultrasonographic scans were performed before the induction of pancreatitis and once daily for five days after the induction. The RI, PI and Vmax were increased with day as follows; the RI prior to induction was 0.625$\pm$0.096 (mean$\pm$SD), the PI was 1.117$\pm$0.289 and the Vmax was 0.349$\pm$0.094 m/s. After five days, the RI was 0.727$\pm$0.051 (p<0.0l), the PI was 1.480$\pm$0.284 (p<0.0l) and the Vmax was 0.585:$\pm$0.114 m/s (p<0.00l). These results show that there is some relation between the increase of the RI, PI and Vmax of cPDAF and the progress of acute pancreatitis in dogs. Therefore, the measurements of the hemodynamic changes of cPDAF may be a valuable technique for the evaluation of acute pancreatitis in dogs.

GEOPHYSICAL EXPLORATION FOR THE SITE CHARACTERISTICS OF THE WESTERN THREE-STORY STONE PAGODA IN GAMEUM TEMPLE ( 감은사지 3층석탑(서탑)의 지반 특성을 위한 지구물리탐사)

  • Seo,Man-Cheol;Choe,Hui-Su;Lee,Chan-Hui;O,Jin-Yong
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.39-46
    • /
    • 2003
  • Twin stone pagodas of the ruins of Kamunsa temple at Kyongju city, Kyungsangbukdo were believed to be built in 682 during the Unified Shilla Kingdom. The 13.4-m-high granodiolite pagodas with the base of 6.78 m x 4.4 m are the largest three-story stone pagoda in Korea. The western pagoda which was re-organized in 1959 is observed to be on the process of severe weathering. Also, some stone contacts are represented by the shape of sharp chevron, which is probably caused by the uneven loading due to the structural unbalance. For the structure-safety diagnosis of the western pagoda, it is necessary to understand its site characteristics and surrounding subsurface environment. Combined geophysical survey such as seismic and resistivity methods was carried out around the western pagoda. The range of 55∼350 Ωm is shown around the pagoda from the electrical resistivity mapping by the Wenner method. The higher resistivities occur the southwestern area, while the lower (<100 Ωm) values indicating the weaker subsurface appear to be on the northeastern area. This result coincides with the measurement of a leaning angle of the pagoda. Along 6 seismic lines, about 3-m-thick uppermost section around the pagoda shows the P-wave velocity of 200∼700 m/s from the refraction survey. Based on the integrated geophysical survey, the foundation of the pagoda is estimated to be in the form of 11-m-side square down to the depth of 3 m.

  • PDF

Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam (농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Leem, Kookmook;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.381-393
    • /
    • 2021
  • Physical, mechanical, hydraulic, and geophysical tests were applied to validate methods of inspecting the effectiveness of grouting on an agricultural reservoir dam. Data obtained from series of in situ and laboratory tests considered four stages: before grouting; during grouting; immediately after grouting; and after aging the grouting for 28 days. The results of SPT and triaxial tests, including the unit weight, compressive strength, friction angle, cohesion, and N-value, indicated the extent of ground improvement with respect to grout injection. However, they sometimes contained errors caused by ground heterogeneity. Hydraulic conductivity obtained from in situ variable head permeability testing is most suitable for identifying the effectiveness of grouting because the impermeability of the ground increased immediately after grouting. Electric resistivity surveying is useful for finding a saturated zone and a seepage pathway, and multichannel analysis of surface waves (MASW) is suitable for analyzing the effectiveness of grouting, as elastic velocity increases distinctly after grouting injection. MASW also allows calculation from the P- and S- wave velocities of dynamic properties (e.g., dynamic elastic modulus and dynamic Poisson's ratio), which can be used in the seismic design of dam structures.

Estimation and Analysis of the Vertical Profile Parameters Using HeMOSU-1 Wind Data (HeMOSU-1 풍속자료를 이용한 연직 분포함수의 매개변수 추정 및 분석)

  • Ko, Dong-Hui;Cho, Hong-Yeon;Lee, Uk-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.122-130
    • /
    • 2021
  • A wind-speed estimation at the arbitrary elevations is key component for the design of the offshore wind energy structures and the computation of the wind-wave generation. However, the wind-speed estimation of the target elevation has been carried out by using the typical functions and their typical parameters, e.g., power and logarithmic functions because the available wind speed data is limited to the specific elevation, such as 2~3m, 10 m, and so on. In this study, the parameters of the vertical profile functions are estimated with optimal and analyzed the parameter ranges using the HeMOSU-1 platform wind data monitored at the eight different locations. The results show that the mean value of the exponent of the power function is 0.1, which is significantly lower than the typically recommended value, 0.14. The values of the exponent, the friction velocity, and the roughness parameters are in the ranges 0.0~0.3, 0~10 (m/s), and 0.0~1.0 (m), respectively. The parameter ranges differ from the typical ranges because the atmospheric stability condition is assumed as the neutral condition. To improve the estimation accuracy, the atmospheric condition should be considered, and a more general (non-linear) vertical profile functions should be introduced to fit the diverse profile patterns and parameters.

Development of VPPE-BE Testing System to Evaluate Modulus under Post-Compaction Variation in Matric Suction for Unsaturated Compacted Soils (다짐지반의 모관흡수력 변화에 따른 탄성계수 평가를 위한 VPPE-BE 시험 시스템 개발)

  • Lee, Sei-Hyun;Seo, Won-Seok;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.117-127
    • /
    • 2008
  • The volumetric pressure plate extractor (VPPE) was modified for the measurement of shear wave velocity ($V_s$) at various levels of matric suction as well as soil water characteristic curve (SWCC). A non-destructive technique with a pair of bender element (BE) was employed in order to measure the $V_s$ and the corresponding maximum shear modulus ($G_{max}$) of unsaturated soil specimens. Three types of soil were collected from different road construction sites in Korea. For all test soils, the variations in $G_{max}$ with the various levels of water content and matric suction were investigated using the developed apparatus. Compared with the preceding results from the suction-controlled torsional shear (TS) testing system and in-situ seismic tests, the feasibility fur evaluating modulus characteristics of unsaturated compacted soils with the developed VPPE-BE system was assessed. It was confirmed that the newly developed system would be potentially helpful in modeling seasonal variation of modulus.

Moho Discontinuity Studies Beneath the Broadband Stations Using Receiver Functions in South Korea (수신함수를 이용한 남한의 광대역 관측망 하부의 Moho 불연속면 연구)

  • Kim, So-Gu;Lee, Seong-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.139-155
    • /
    • 2001
  • We investigate the vertical velocity models beneath the newly installed broadband seismic network of KMA (Korea Meteorological Administration) by using receiver function inversion technique. The seismic phases are primarily P-to-S conversions and reverberations generated at the two highest impedance interfaces like the Moho (crust-mantle boundary) and the sediment-basement contact. We obtained the teleseismic P-wave receiver functions, which were derived from teleseismic records of Seoul (SEO), Inchon (INCN), Tejeon (TEJ) , Sosan (SOS/SES), Kangnung (KAN), Ulchin (ULC/ULJ), Taegu (TAG), Pusan (PUS), and Ullung-do (ULL) stations. For Kwangju (KWA/KWJ) and Chunchon (CHU) stations, the Moho conversion Ps arrivals and waveforms of radial receiver functions are azimuthally inconsistent and unclear. From the receiver function inversion result, we found that crustal thickness is 29 km at INCN, SEO, and SOS (SES) stations, 28 km at KAN station in the Kyonggi Massif, 32 km at TEJ station in Okchon Folded Belt, 34 km at TAG, 33 km at PUS station in the Kyongsang Basin, 32 km at KWJ station (readjusted station by prior KWA station) included in the Youngdong-Kwangju Depression Zone, 28 km at ULC station in the eastern margin of the Ryongnam Massif, and 17 km at ULL station in the Ullung Island of the East Sea, respectively. The Moho configuration of INCN, SOS, KWJ, and KAN stations show a laminated smooth transition zone with a 3-5 km thick. The upper crusts(${\sim}5km$) of KAN, ULC, and PUS stations show complex structures with a high velocity. The unusually thick crusts are found at the TAG and PUS stations in the Kyongsang Basin compared to the thin (29-32 km) crust of the western part (INCN, SEO, SOS, TEJ, and KWA stations) The crustal thickness beneath Ullung Island (ULL station) shows the suboceanic crust with about 17 km thickness and complex with a high velocity layer of the upper crust, and the amplitudes of Incoming Ps waves from the western direction are relatively large compared to those from othor directions.

  • PDF

Experiments on the stability of the spatial autocorrelation method (SPAC) and linear array methods and on the imaginary part of the SPAC coefficients as an indicator of data quality (공간자기상관법 (SPAC)의 안정성과 선형 배열법과 자료 품질 지시자로 활용되는 SPAC 계수의 허수 성분에 대한 실험)

  • Margaryan, Sos;Yokoi, Toshiaki;Hayashi, Koichi
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.121-131
    • /
    • 2009
  • In recent years, microtremor array observations have been used for estimation of shear-wave velocity structures. One of the methods is the conventional spatial autocorrelation (SPAC) method, which requires simultaneous recording at least with three or four sensors. Modified SPAC methods such as 2sSPAC, and linear array methods, allow estimating shear-wave structures by using only two sensors, but suffer from instability of the spatial autocorrelation coefficient for frequency ranges higher than 1.0 Hz. Based on microtremor measurements from four different size triangular arrays and four same-size triangular and linear arrays, we have demonstrated the stability of SPAC coefficient for the frequency range from 2 to 4 or 5 Hz. The phase velocities, obtained by fitting the SPAC coefficients to the Bessel function, are also consistent up to the frequency 5 Hz. All data were processed by the SPAC method, with the exception of the spatial averaging for the linear array cases. The arrays were deployed sequentially at different times, near a site having existing Parallel Seismic (PS) borehole logging data. We also used the imaginary part of the SPAC coefficients as a data-quality indicator. Based on perturbations of the autocorrelation spectrum (and in some cases on visual examination of the record waveforms) we divided data into so-called 'reliable' and 'unreliable' categories. We then calculated the imaginary part of the SPAC spectrum for 'reliable', 'unreliable', and complete (i.e. 'reliable' and 'unreliable' datasets combined) datasets for each array, and compared the results. In the case of insufficient azimuthal distribution of the stations (the linear array) the imaginary curve shows some instability and can therefore be regarded as an indicator of insufficient spatial averaging. However, in the case of low coherency of the wavefield the imaginary curve does not show any significant instability.

Analysis of the Effect of the Revised Ground Amplification Factor on the Macro Liquefaction Assessment Method (개정된 지반증폭계수의 Macro적 액상화 평가에 미치는 영향 분석)

  • Baek, Woo-Hyun;Choi, Jae-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.2
    • /
    • pp.5-15
    • /
    • 2020
  • The liquefaction phenomenon that occurred during the Pohang earthquake (ML=5.4) brought new awareness to the people about the risk of liquefaction caused by the earthquake. Liquefaction hazard maps with 2 km grid made in 2014 used more than 100,000 borehole data for the whole country, and regions without soil investigation data were produced using interpolation. In the mapping of macro liquefaction hazard for the whole country, the site amplification effect and the ground water level 0 m were considered. Recently, the Ministry of Public Administration and Security (2018) published a new site classification method and amplification coefficient of the common standard for seismic design. Therefore, it is necessary to rewrite the liquefaction hazard map reflecting the revised amplification coefficient. In this study, the results of site classification according to the average shear wave velocity in soils before and after revision were compared in the whole country. Also, liquefaction assessment results were compared in Gangseo-gu, Busan. At this time, two ground accelerations corresponding to the 500 and 1,000 years of return period and two ground water table, 5 m for the average condition and 0 m the extreme condition were applied. In the drawing of liquefaction hazard map, a 500 m grid was applied to secure a resolution higher than the previous 2 km grid. As a result, the ground conditions that were classified as SC and SD grounds based on the existing site classification standard were reclassified as S2, S3, and S4 through the revised site classification standard. Also, the result of the Liquefaction assessments with a return period of 500 years and 1,000 years resulted in a relatively overestimation of the LPI applied with the ground amplification factor before revision. And the results of this study have a great influence on the liquefaction assessment, which is the basis of the creation of the regional liquefaction hazard map using the amplification factor.

Queue Length Based Real-Time Traffic Signal Control Methodology Using sectional Travel Time Information (구간통행시간 정보 기반의 대기행렬길이를 이용한 실시간 신호제어 모형 개발)

  • Lee, Minhyoung;Kim, Youngchan;Jeong, Youngje
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • The expansion of the physical road in response to changes in social conditions and policy of the country has reached the limit. In order to alleviate congestion on the existing road to reconsider the effectiveness of this method should be asking. Currently, how to collect traffic information for management of the intersection is limited to point detection systems. Intelligent Transport Systems (ITS) was the traffic information collection system of point detection method such as through video and loop detector in the past. However, intelligent transportation systems of the next generation(C-ITS) has evolved rapidly in real time interval detection system of collecting various systems between the pedestrian, road, and car. Therefore, this study is designed to evaluate the development of an algorithm for queue length based real-time traffic signal control methodology. Four coordinates estimate on time-space diagram using the travel time each individual vehicle collected via the interval detector. Using the coordinate value estimated during the cycle for estimating the velocity of the shock wave the queue is created. Using the queue length is estimated, and determine the signal timing the total queue length is minimized at intersection. Therefore, in this study, it was confirmed that the calculation of the signal timing of the intersection queue is minimized.