• 제목/요약/키워드: S-transferase

검색결과 1,041건 처리시간 0.028초

Molecular Cloning of a Delta-class Glutathione S-transferase Gene from Bombus ignitus

  • Park, Jong-Hwa;Yoon, Hyung-Joo;Gui, Zhong Zheng;Jin, Byung-Rae;Sohn, Hung-Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제18권1호
    • /
    • pp.28-32
    • /
    • 2009
  • We describe here the cloning and characterization of a cDNA encoding the glutathione S-transferase (GST) from the bumblebee Bombus ignitus. The Delta-class B. ignitus GST (BiGSTD) gene spans 1668 bp and consists of four introns and five exons that encode 216 amino acid residues with a calculated molecular weight of approximately 24561 Da and a pI of 8.03. The N-terminal domain of BiGSTD has a conserved Ser residue, as well as conserved Lys, Pro, Glu, Ser and Tyr residues that are involved in the GSH-binding site of GST. The BiGSTD showed 60% protein sequence identity to the Bombyx mori GSTT1, 58% to Musca domestica GST, 57% to Drosophila melanogaster GST, and 55% to Anopheles gambiae GST1. BiGSTD was close to the insect-specific Delta class of GSTs in a phylogenetic tree. Northern blot analysis showed that BiGSTD is highly expressed in the fat body and midgut, and less so in the muscles of B. ignitus worker bees.

Effects of the Methanol Extract of the Leaves of Brassica juncea and Its Major Component, Isorhamnetin $3-O-{\beta}-D-Glucoside$, on Hepatic Drug Metabolizing Enzymes in Bromobenzene-treated Rats

  • Hur, Jong-Moon;Choi, Jong-Won;Park, Jong-Cheol
    • Food Science and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.439-443
    • /
    • 2007
  • The effects of the methanol extract of the leaves of Brassica juncea and isorhamnetin $3-O-{\beta}-D-glucopyranoside$, major compound isolated from the ethyl acetate fraction of this plant on hepatic lipid peroxidation and drug-metabolizing enzymes, were evaluated in rats treated with bromobenzene. The extract and isorhamnetin $3-O-{\beta}-D-glucopyranoside$ of oral administration did not show any significant effects on activities of aminopyrine N-demethylase and aniline hydroxylase, enzymes forming toxic epoxide by bromobenzene as well as on glutathione content. However, both methanol extract and isorhamnetin $3-O-{\beta}-D-glucopyranoside$ significantly recovered the decreased activities of glutathione s-transferase and epoxide hydrolase, and also reduced the lipid peroxide level in rats treated with bromobenzene. From the results, the protections of this plant against bromobenzene-induced hepatotoxicity are thought to be via enhancing the activities of epoxide hydrolase and glutathione s-transferase, enzymes removing toxic epoxide, and reducing the lipid peroxide level.

cDNA Sequence and mRNA Expression of a Putative Glutathione S-Transferase from the Mole Cricket, Gryllotalpa orientalis

  • Kim, Iksoo;Lee, Kwang-Sik;Jin, Byung-Rae;Kim, Jin-Won;Ryu, Kang-Sun;Ahn, Mi-Young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제6권2호
    • /
    • pp.157-162
    • /
    • 2003
  • The glutathione S-transferase (GSTs) are enzymes responsible for the protection of cells from chemical toxicants and oxidative stress. We describe here the cDNA sequence and mRNA expression of a putative GST from the mole cricket, Gryllotalpa orientalis. The G. orientalis GST cDNA sequences comprised of 621 bp encoding 207 amino acid residues. The multiple sequence alignment of G. orientalis GST gene with other known insect GSTs showed several conserved residues that may be essential for the enzymatic activity of the protein. Phylogenetic analysis of the deduced amino acid sequences of G. orientalis GST gene with other insect GST sequences revealed that the G. orientalis GST gene belongs to class I GST, forming a strong monophyletic group (100% bootstrap value) exclusively for class I GSTs from a diverse insect species. Northern blot analysis confirmed midgut-specific expression at transcriptional level, evidencing the midgut as a site for GST synthesis.

Biotransformation of the Fungicide Chlorothalonil by Bacterial Glutathione S-Transferase

  • Kim, Young-Mog;Park, Kun-Bawui;Choi, Jun-Ho;Kim, Jang-Eok;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.938-943
    • /
    • 2004
  • A gene responsible for the chlorothalonil-biotransformation was cloned from the chromosomal DNA of Ochrobactrum anthropi SH35B, an isolated bacterium strain from soil. We determined the nucleotide sequences and found an open reading frame for glutathione S-transferase (GST). The drug-hypersensitive Escherichia coli KAM3 cells transformed with a plasmid carrying the GST gene can grow in the presence of chlorothalonil. The GST of O. anthropi SH35B was expressed in E. coli and purified by affinity chromatography. The fungicide chlorothalonil was rapidly transformed by the purified GST in the presence of glutathione. No significant difference in the chlorothalonil-biotransformation effect was observed among the thiol compounds (cysteine, reduced glutathione, and $\beta$-mercaptoethanol). Thus, the result reported here is the first evidence on the chlorothalonil-biotransformation by conjugation with the cellular free thiol groups, especially glutathione, catalyzed by the bacterial GST.

황기(黃耆) 약침액(藥鍼液)의 Glutathione S-transferase 와 NAD(P)H: Quinone Reductase 유도 (Induction of Glutathione S-transferase and NAD(P)H:Quinone Reductase by Astragali Radix Aqua-acupuncture Solution)

  • 류준선;임종국
    • Korean Journal of Acupuncture
    • /
    • 제18권1호
    • /
    • pp.21-26
    • /
    • 2001
  • 발암물질을 무독화시키는 QR 생성 유도를 살펴보기 위하여 황기 약침액 및 열수추출액을 생쥐의 간암세포인 Hepa1c1c7에 처리하여 측정한 결과, 황기 약침액의 농도를 증가시킬수록 많은 QR 생성율을 보였으며, GSH 생성이 증가하였고, GST 생성 또한 증가하였다.

  • PDF

녹차가 흰쥐의 혈청 및 간의 지질성분과 항산화계 효소 활성도에 미치는 영향 (The Effect of Green Tea on the Lipid Composition of Serum and Liver and the Activities of Antioxidative Enzymes in Rats)

  • 정희정;유영상
    • 동아시아식생활학회지
    • /
    • 제6권1호
    • /
    • pp.41-49
    • /
    • 1996
  • This research was performed to Investigate the effects of green tea on the lipid composition of serum and liver and the specific activities of antioxidative enzymes. Male Sprague Dawley rats were fed 10% fat diet with lard and fish oil. Powdered green tea was added to the lard and fish oil diet at the level of 0.1% and 1%. After 6 weeks of feeding, serum and liver were obtained from experimental rats. Then we measured the concentration of total cholesterol, HDL-cholesterol and triglyceride. From liver cytosolic fraction, we analized the specific activities of superoxide dismutase, glutathione peroxidase and glutathione S-transferase. The level of total cholesterol and triglyceride were decreased and the ratio of HDL-cholesterol to total cholesterol was increased by the fish oil in the serum. But in the liver, the level of total cholesterol was increased by the fish oil and green tea than the lard. The specific activities of glutathione S-transferase were more increased in the fish oil than the lard. There was not effect of the green tea of daily dose on the lipid composition of serum and liver and the specific activities of antioxidative enzymes in rats.

  • PDF

Cloning and Expression of Serratia marcescens Coenzyme A(CoA) Transferase Gene in E. coli

  • Choi, Yong-Lark;Kim, Hae-Sun;Yoo, Ju-Soon;Kim, Yong-Gyun;Chung, Chung-Han
    • Journal of Life Science
    • /
    • 제9권1호
    • /
    • pp.54-57
    • /
    • 1999
  • We have got several clones from Serratia marcescens which stimulated the cells to use maltose as a carbon source in E. coli TP2139 (${\Delta}$lac, ${\Delta}$crp). One of the cloned genes, pCKB13, was further analyzed. In order to find whether the increased expression of the gene under the direction of maltose metabolism, we constructed several recombinant subclones. We have confirmed that the clone, pCKB13 codes Coenzyme A transferase gene by partial nucleotide sequencing in the terminal region. The enzyme activity of Coenzyme A transferase increased after introduction of the multicopy of the cloned gene in E. coli. The recombinant proteins expressed by multicopy and induction with IPTG, two polypeptide of 26-and 28-kDa, were confirmed by SDS-PAGE. Southern hybridization analysis confirmed that the cloned DNA fragment was originated from S. marcescens chromosomal DNA.

  • PDF

식용 어패류 조직중의 glutathione S-transferase 활성과 화학물질 오염에 의한 변화 (Glutathione-S-transferase Activity and its Changes to Chemical Pollution in Edible Shells and Fishes)

  • 송미란;최선남;박관하
    • 한국식품과학회지
    • /
    • 제30권1호
    • /
    • pp.206-212
    • /
    • 1998
  • 본 연구는 식용으로 사용되는 어패류의 화학오염지표로서 glutathione S-transferase (GST)의 활성을 사용 할 수 있는 가를 검토하기 위하여 수행하였다 어류의 간췌장 및 패류의 소화선에서 기초적 GST 효소활성은 시험한 동물종에 따라 차이를 보였다. 시험한 어패류 중 큰이랑 피조개에서의 활성이 가장 높았으며 메기 및 홍합이 그 다음이었다. 백합 및 이스라엘 잉어에서는 낮은 기초적 활성을 보여 주었다. 큰이랑 피조개를 전형적인 PAH물질인 3-methylcholanthrene에 1주일간 노출 시켰을 경우 GST의 활성은 약 30% 감소하였으며 노출중단 2주경에는 회복되었다. 다른 대부분의 동물종에서는 GST의 활성이 3-MC에 의하여 증가하였다. 홍합의 경우 기초 활성의 약 200%수준으로 증가하여 노출중단 후에도 1주일간 지속되다가 서서히 감소하였다. 이스라엘 잉어에서도 홍합과 유사한 반응이 관찰되었다. Phenobarbital은 홍합 및 이스라엘 잉어에서 GST활성을 증가시켰다. Clobibrate, butylated hydroxyanisole 및 oxolinic acid 등은 효소활성의 변화를 유발하지 아니하였다. 한편 phenol은 이스라엘 잉어에서 활성을 감소시켰다. 이 결과를 종합하면 식용 어패류의 정상적 GST활성은 동물종에 따라 큰 차이가 나며 화학물질 오염에 따른 변화도 증가, 감소 및 불변으로 다양한 것으로 관찰되었다. 따라서 이 효소의 활성을 측정함으로서 PAH나 phenol과 같은 환경 오염물질에 의한 오염정도를 추정할 수 있는 지표로의 사용이 가능하리라고 본다.

  • PDF

Chemical Modification Studies of Yeast Farnesyl Protein Transferase

  • Sohn, Seung-Wan;Jun, Gyo;Yang, Chul-Hak
    • BMB Reports
    • /
    • 제30권4호
    • /
    • pp.280-284
    • /
    • 1997
  • Phenylglyoxal diethyl pyrocarbonate (DEPC), and 1-cyclohexyl-3-[2-morpholinoethyl]-carbodiimide metho-p-toluenesulfonate (CMC) are modifying reagents specific for arginine, histidine, and aspartate or glutamate, respectively. They were found to inactivate S. cerevisiae farnesyl protein transferase (FPTase). The peptide substrate protected the enzyme against inactivation by CMC and the other substrate farnesyl pyrophosphate showed protection against inactivation by phenylglyoxal. while neither of the two substrates protected the enzyme against DEPC inactivation. These results suggest the presence of aspartate/glutamate, arginine and histidine residues at the active site of this enzyme.

  • PDF

Chemical Modification of Yeast Farnesyl Protein Transferase Expressed in E. coli

  • Kim, Hyun-Kyung;Yang, Chul-Hak
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권4호
    • /
    • pp.529-534
    • /
    • 2006
  • Chemical modification of the S. cerevisiae farnesyl protein transferase (FPT) with CMC, phenylglyoxal and DEPC resulted in enzyme inactivation, depending upon the reagent concentration. The peptide substrate GST-PEP-I, a GST-fused undecapeptide mimicking the C-terminus of $p21^{Ki-ras}$, protected the enzyme against inactivation by CMC which is specific to either aspartate or glutamate, while the other substrate farnesyl pyrophosphate (FPP) showed protection against phenylglyoxal which is the specific modifier of arginine residues, dependent on the substrate concentrations. Neither of the two substrates protected the enzyme against histidine inactivation by DEPC. It is suggested that there is at least one aspartate or glutamate residue at the peptide substrate binding site, and that at least one arginine residue is located at the binding site of FPP. There also seems to be at least one histidine residue which is critical for enzymic activity and is exposed toward the bulk solution, excluded from the substrate binding sites.