• Title/Summary/Keyword: S-PVA

Search Result 226, Processing Time 0.021 seconds

Evaluation on the Impact Resistant Performance of Fiber Reinforced Concrete by High-Velocity Projectile and Contacted Explosion (고속비상체 충돌 및 접촉폭발에 의한 섬유보강 콘크리트의 내충격 성능 평가)

  • Nam, Jeong-Soo;Kim, Hong-Seop;Lee, In-Cheol;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.107-114
    • /
    • 2013
  • In this study we experimentally evaluated an impact resistant performance of fiber reinforced concrete in the moment of explosion by high-velocity projectile with emulsion explosive. To assess the impact resistance, we conducted the impact test of high-velocity projectile which reaches an impact speed of 350 m/s and the experiment of contact exploding emulsion explosive. As a result, bending and tensile performance depending on type of PVA, PE fiber (polyvinyl alcohol fiber, polyethylene fiber) and steel fiber affects destruction of rear side in the form of spalling. Destroying the backside of the concrete compressive strength compared to suppress the bending and tensile performance is affected. In addition, the experiment shows that the destruction patterns of concrete specimen producted by high velocity impact and contact explosion are significantly similar. Therefore, it is possible to predict the destruction patterns of specimens in the situation of contact explosion by high-velocity projectile.

Preparation and Characterization of Unsaturated Poly(3-hydroxyalkanoate) Nanoparticles (불포화 폴리히드록시알칸오에이트 나노입자의 제조 및 특성)

  • 한정현;김승수;신병철;이영하;홍성욱
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.542-548
    • /
    • 2003
  • Nanoparticles with unsaturated poly(hydroxyalkanoate)s (UPHAs) biosynthesized with Pseudo-monas oleovorans were prepared by spontaneous emulsification solvent diffusion method. The influence of nanoparticle formation was investigated with various experimental parameters such as sonication conditions, sol-vent, surfactant and polymer contents, etc. The physical and chemical properties of UPHAS and its nanoparticles were characterized using $^1$H- and $\^$13/C-nuclear magnetic resonance spectroscopies, attenuated total reflection infrared spectroscopy, differential scanning calorimetry and gel permeation chromatography. The morphology of particles was observed using scanning electron microscope and the size and distribution of nanoparticles were measured with electrophoretic light scattering spectrophotometer. The mean diameter of particles decreased with increasing sonication amplitude and time. The addition of ethanol into UPHAS chloroform solution decreased the particle size presumably due to increased solvent diffusion into water phase. The particle size increased with increased the concentration of UPHAS solution. Under the 2-4% poly(vinyl alcohol) (PVA) aqueous solution the minimum mean diameter of particles was shown. The higher degree of hydrolysis and degree of polymerization of PVA increased the mean diameter of particles.

Estimating properties of reactive powder concrete containing hybrid fibers using UPV

  • Nematzadeh, Mahdi;Poorhosein, Reza
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.491-502
    • /
    • 2017
  • In this research, the application of ultrasonic pulse velocity (UPV) test as a nondestructive method for estimating some of the mechanical and dynamic properties of reactive powder concrete (RPC) containing steel and polyvinyl alcohol (PVA) fibers, as well as their combination was explored. In doing so, ten different mix designs were prepared in 19 experimental groups of specimens containing three different volume contents of steel fibers (i.e., 1, 2, and 3 %) and PVA fibers (i.e., 0.25, 0.5, and 0.75 %), as well as hybrid fibers (i.e., 0.25-0.75, 0.5-0.5, and 0.75-0.25 %). The specimens in these groups were prepared under the two curing regimes of normal and heat treatment. Moreover, the UPV test results were employed to estimate the compressive strength, dynamic modulus, shear modulus, and Poisson's ratio of the RPC concrete and to investigate the quality level of the used concrete. At the end, the effect of the specimen shape and in fact the measuring distance length on the UPV results was explored. The results of this research suggest that the steel fiber-containing RPC specimens demonstrate the highest level of ultrasonic pulse velocity as well as the highest values of the mechanical and dynamic properties. Moreover, heat treatment has a positive effect on the density, UPV, dynamic modulus, Poisson's ratio, and compressive strength of the RPC specimens, whereas it leads to a negligible increase or decrease in the shear modulus and static modulus of elasticity. Furthermore, the specimen shape affects the UPV of fiber-lacking specimens while negligibly affecting that of fiber-reinforced specimens.

A Study on the Dust Control Effect of PM10 Dust Inhibitor by Polysaccharides and its Effect on Water Quality and Soil Environment (Polysaccharides를 이용한 PM10 먼지억제제의 먼지제어 효과와 수질 및 토양 환경에 미치는 영향에 대한 연구)

  • Lee, Han Seob;Choi, Sung Boo;Hwang, Su Jin;Hwang, Hyun Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.59-65
    • /
    • 2017
  • In this study, A dust inhibitor for $PM_{10}$ was prepared by using molecular structure, molecular weight, viscosity, hydrophilicity, swelling and wetting / moisturizing properties of natural polysaccharide which is widely used as food and cosmetic materials. Various dust control effects were confirmed and superior results were obtained than simple water spraying and synthetic PVA as a control. In addition, the comparison of water evaporation, pot test of cabbage seed germination, effects on fish and aquatic plants, and effects on herb plant growth were studied and the safety of soil and water quality was studied. The availability of the dust inhibitor was confirmed.

The Stabilization of Liquid Crystal Emulsions by Acrylamide Copolymers (Acrylamide Copolymers에 의한 Liquid Crystal Emulsions의 안정성에 관한 연구)

  • Ryu, Hai-Il;Jang, Nak-Han;Jeon, Youn-Seok;Lee, Myeong-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.2005-2014
    • /
    • 2009
  • There are several methods to fabricate Polymer Dispersed Liquid Crystal(PDLC) films. One of them, so-called Nematic Curvilinear Aligned Phase(NCAP) film, is based on emulsion technology. To produce NCAP systems various water soluble polymers, such as partially hydrolyzed polyvinylalcohol(PVA) and polyvinyl pyrrolidone(PVP), which can form stable emulsion of liquid crystal(LC) without any stabilizers were used. In this work, we studied the dependence of emulsion stability on nature and composition of copolymers composed of water-soluble and water-insoluble moiety. We found that interfacial surface tension depends on the composition of comonomer, the copolymer concentration in the water, and the nature of hydrophobic chain. The Acrylamide -styrene(AA-ST) copolymer showed the lowest interfacial surface tension among the tested copolymers at the same concentration. Since the interfacial surface tension decreases with increasing the compatibility of copolymer with LC phase the AA-ST copolymer has the best compatibility with LC molecules. It is believed that molecules adsorbing easily on the surface of LC droplets allows the LC emulsion system to be more stable.

Alizarin Red S modified electrochemical sensors for the detection of aluminum ion

  • Chang, Seung-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.421-427
    • /
    • 2010
  • Alizarin Red S modified screen printed carbon electrodes were developed for the electrochemical detection of aluminum ion. The electrodes developed use screen-printed carbon electrodes(SPCEs) coupled with chemical modification with an organic chelator, Alizarin Red S(ARS), for aluminum ion detection in aqueous solution. For sensor fabrication ARS was directly immobilized on the surface of SPCEs using PVA-SbQ(The poly(vinyl alcohol) bearing stryrylpyridinium groups). Aluminum concentrations were indirectly estimated by amperometric determination of the non-complexed ARS immobilized on the electrodes, after its complexation with aluminum. The sensitivity of the sensor developed was $3.8\;nA{\mu}M^{-1}cm^{-2}$ and the detection limit for aluminum was $25\;{\mu}M$.

Determination of Skin Adhesion Rate of Children's Modeling Clay for Exposure Assessment (어린이 노출평가를 위한 점토류의 피부 점착률 산출)

  • Guak, Sooyoung;Lim, Miyoung;Shin, Hyerin;Park, Ji Young;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.3
    • /
    • pp.238-243
    • /
    • 2018
  • Objectives: The purpose of this study was to determine skin adhesion rate of children's modeling clay for exposure assessment. Methods: Children's modeling clays were classified into 10 categories as PVA clay, PVA soft clay, starch-based clay, foam clay, rubber clay, oil clay, muddy clay, terra clay, paper clay and slime. A total of 26 children's clay goods was selected. Moisture content (%) and hardness of clays were measured. Five adults aged 20 to 25were recruited for experiment. Gravimetric difference of modeling clay was determined after 3 minutes playing time. Skin adhesion rate ($g/min/cm^2$) was estimated bythe amount of skin adhesion per minute (g/min) and each individual's palm surface area ($cm^2$). Results: Twenty four of the 26 children's modeling clay products were adhesive to skins. Two products of foam and rubber clay were not adhered to skin. For the 24 products, the average skin adhesion rate was $5.5{\times}10^{-4}{\pm}4.0{\times}10^{-4}g/min/cm^2$. The highest skin adhesion rate was $1.3{\times}10^{-3}{\pm}4.4{\times}10^{-4}g/min/cm^2$ for paper clay. The lowest skin adhesion rate was $4.6{\times}10^{-5}{\pm}1.1{\times}10^{-4}g/min/cm^2$ for oil clay. The skin adhesion rate was increased with increase of moisture content. Adhesion rates of some clays were varied by person and testing trials. Conclusion: The study determined skin adhesion rate of children's modeling clay. The adhesion rate is useful for exposure and risk assessments and setting safety guideline to protect children's health.

Studies on the Preparation of the Poly(vinyl alcohol) ion Exchange Membranes for Direct Methanol Fuel cell (폴리비닐알콜을 이용한 직접메탄을 연료전지용 이온교환막 제조에 관한 연구)

  • 임지원;천세원;전지현;남상용
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.191-199
    • /
    • 2003
  • Cation exchange polymer electrolyte membrane for the application of direct methanol fuel cell (DMFC) was studied. Poly(vinyl alcohol)(PVA) well known as a methanol barrier in pervaporation separation was used fur the base materials and poly(acrylic acid)(PAA) was used for the crosslinking agent with various concentration. Methanol permeability, ion conductivity, ion exchange capacity, water contents and fixed ion concentration of the membranes were investigated to evaluate the performance of the fuel cell electrolyte membrane. Methanol permeability and ion conductivity of the membranes were decreased with increasing PAA content and were increased over 15% of PAA content. These phenomena would be explained with the introduction of hydrophilic crosslinking agent. The membranes with 15% content of PAA showed methanol permeability of $6.49{\times}10^{-8}/cm^2/s,\; 2.85{\times}10^{-7}CM^2/s$ at $25^{\circ}C,\; 50^{\circ}C$ of operating temperatures, respectively. ion conductivities of the membrane were $2.66{\times}10^{-3}\;S/cm,$ $9.16{\times}10^{-3}\;S/cm$ at $25^{\circ}C,\; 50^{\circ}C$ of operating temperatures, respectively. ion exchange capacity, water content and fixed ion concentration of the membrane were revealed 1.32 meq/g membrane,0.25 g $H_2$O/g membrane and 5.25 meq/g $H_2O$, respectively.

Improvement and Seismic Performance Evaluation of RC Exterior Beam-Column Joints Using Recycled Coarse Aggregate with Hybrid Fiber (순환굵은골재 치환과 하이브리드섬유 혼입에 따른 철근콘크리트 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Jae-Hoon;Ha, Gee-Joo;Shin, Jong-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.160-169
    • /
    • 2015
  • In this study, experimental research was carried out to improve the seismic performance of reinforced concrete exterior beam-column joint regions using replacing recycled coarse aggregate with hybrid fiber (steel fiber+PVA fiber) in existing reinforced concrete building. Therefore it was constructed and tested seven specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of reinforced concrete building, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and bridge of retrofitting hybrid fiber during testing. Specimens BCJGPSR series, designed by the retrofitting of replacing recycled coarse aggregate with hybrid fiber in reinforecd beam-column joint regions were increased its maximum load carrying capacity by 1.01~1.04 times and its energy dissipation capacity by 1.06~1.29 times in comparison with standard specimen BCJS. Also, specimen $BCJGPSR_1$ were increased its energy dissipation capacity by 1.33~1.65 times in comparison with specimens BCJS, BCJP and BCJGPR series for a displacement ductility of 9.