• Title/Summary/Keyword: S-NPP/VIIRS

Search Result 7, Processing Time 0.027 seconds

Application of VIIRS land products for agricultural drought monitoring (농업가뭄 모니터링을 위한 VIIRS 센서 지표산출물 적용성 분석)

  • Sur, Chanyang;Nam, Won-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.729-735
    • /
    • 2023
  • The Moderate resolution Imaging Spectroradiometer (MODIS) is a multispectral sensor that has been actively researched in various fields using diverse land and atmospheric products. MODIS was first launched over 20 years ago, and the demand for novel sensors that can produce data comparable to that obtained using MODIS has continuously increased. In this study, land products obtained using the Visible Infrared Imaging Radiometer Suite (VIIRS) of the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite launched in 2011 were introduced, including land surface temperature and vegetation indices such as the normalized difference vegetation index and enhanced vegetation index. These land products were compared with existing data obtained using MODIS to verify their local applicability in South Korea. Based on spatiotemporal monitoring of an extreme drought period in South Korea and the application of VIIRS land products, our results indicate that VIIRS can effectively replace MODIS multispectral sensors for agricultural drought monitoring.

Evaluation of GSICS Correction for COMS/MI Visible Channel Using S-NPP/VIIRS

  • Jin, Donghyun;Lee, Soobong;Lee, Seonyoung;Jung, Daeseong;Sim, Suyoung;Huh, Morang;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.169-176
    • /
    • 2021
  • The Global Space-based Inter-Calibration System (GSICS) is an international partnership sponsored by World Meteorological Organization (WMO) to continue and improve climate monitoring and to ensure consistent accuracy between observation data from meteorological satellites operating around the world. The objective for GSICS is to inter-calibration from pairs of satellites observations, which includes direct comparison of collocated Geostationary Earth Orbit (GEO)-Low Earth Orbit (LEO) observations. One of the GSICS inter-calibration methods, the Ray-matching technique, is a surrogate approach that uses matched, co-angled and co-located pixels to transfer the calibration from a well calibrated satellite sensor to another sensor. In Korea, the first GEO satellite, Communication Ocean and Meteorological Satellite (COMS), is used to participate in the GSICS program. The National Meteorological Satellite Center (NMSC), which operated COMS/MI, calculated the Radiative Transfer Model (RTM)-based GSICS coefficient coefficients. The L1P reproduced through GSICS correction coefficient showed lower RMSE and Bias than L1B without GSICS correction coefficient applied. The calculation cycles of the GSICS correction coefficients for COMS/MI visible channel are provided annual and diurnal (2, 5, 10, 14-day), but long-term evaluation according to these cycles was not performed. The purpose of this paper is to perform evaluation depending on the annual/diurnal cycles of COMS/MI GSICS correction coefficients based on the ray-matching technique using Suomi-NPP/Visible Infrared Imaging Radiometer Suite (VIIRS) data as reference data. As a result of evaluation, the diurnal cycle had a higher coincidence rate with the reference data than the annual cycle, and the 14-day diurnal cycle was the most suitable for use as the GSICS correction coefficient.

Comparison of MODIS and VIIRS NDVI Characteristics on Corn and Soybean Cultivation Areas in Illinois (일리노이주 옥수수, 콩 재배지 MODIS와 VIIRS NDVI 특성 비교)

  • Kyungdo Lee;Sookgyeong Kim;Jae-Hyun Ryu;Hoyong Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1483-1490
    • /
    • 2023
  • We analyzed the potential for joint utilization of Visible Infrared Imaging Radiometer Suite (VIIRS) satellite imagery Normalized Difference Vegetation Index (NDVI) in crop assessment, considering the aging of MODerate resolution Imaging Spectroradiometer (MODIS) satellites. Over 11 years from 2012 to 2022, we examined the characteristics of NDVI changes in corn and soybean cultivation areas in Illinois, USA. VIIRS and MODIS satellite imagery NDVI exhibited a high correlation coefficient of over 0.98. However, during periods of rapid crop growth or decline, VIIRS NDVI showed values approximately 0.12 to 0.14 higher than MODIS. Estimating crop anomaly classes based on NDVI, we observed similar trends in corn and soybean crop anomaly classes in 2018 and 2019. However, in 2022, there appeared to be a significant divergence in crop anomaly classes, suggesting the need for further investigation. The correlation coefficients between MODIS and VIIRS satellite imagery NDVI and corn and soybean yields were consistently high, exceeding 0.8, indicating the potential for quantity estimation using both MODIS and VIIRS satellite imagery. Specifically, for VIIRS NDVI, excluding the increasing trend in crop quantity estimation for soybeans enhanced the correlation, and compared to MODIS, it showed a consistently high correlation with quantity from approximately 16 days earlier, indicating the potential for early estimation.

Moon Phase based Threshold Determination for VIIRS Boat Detection

  • Kim, Euihyun;Kim, Sang-Wan;Jung, Hahn Chul;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.69-84
    • /
    • 2021
  • Awareness of boats is a main issue in areas of fishery management, illegal fishing, and maritime traffic, etc. For the awareness, Automatic Identification System (AIS) and Vessel-Pass System (V-PASS) have been widely used to collect the boat-related information. However, only using these systems makes it difficult to collect the accurate information. Recently, satellite-based data has been increasingly used as a cooperative system. In 2015, U.S. National Oceanic and Atmospheric Administration (NOAA) developed a boat detection algorithm using Visible Infrared Imaging Radiometer Suite (VIIRS) Day & Night Band (DNB) data. Although the detections have been widely utilized in many publications, it is difficult to estimate the night-time fishing boats immediately. Particularly, it is difficult to estimate the threshold due to the lunar irradiation effect. This effect must be corrected to apply a single specific threshold. In this study, the moon phase was considered as the main frequency of this effect. Considering the moon phase, relational expressions are derived and then used as offsets for relative correction. After the correction, it shows a significant reduction in the standard deviation of the threshold compared to the threshold of NOAA. Through the correction, this study can set a constant threshold every day without determination of different thresholds. In conclusion, this study can achieve the detection applying the single specific threshold regardless of the moon phase.

Estimation of nighttime aerosol optical thickness from Suomi-NPP DNB observations over small cities in Korea (Suomi-NPP위성 DNB관측을 이용한 우리나라 소도시에서의 야간 에어로졸 광학두께 추정)

  • Choo, Gyo-Hwang;Jeong, Myeong-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.73-86
    • /
    • 2016
  • In this study, an algorithm to estimate Aerosol Optical Thickness (AOT) over small cities during nighttime has been developed by using the radiance from artificial light sources in small cities measured from Visible Infrared Imaging Radiometer Suite (VIIRS) sensor's Day/Night Band (DNB) aboard the Suomi-National Polar Partnership (Suomi-NPP) satellite. The algorithm is based on Beer's extinction law with the light sources from the artificial lights over small cities. AOT is retrieved for cloud-free pixels over individual cities, and cloud-screening was conducted by using the measurements from M-bands of VIIRS at infrared wavelengths. The retrieved nighttime AOT is compared with the aerosol products from MODerate resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites. As a result, the correlation coefficients over individual cities range from around 0.6 and 0.7 between the retrieved nighttime AOT and MODIS AOT with Root-Mean-Squared Difference (RMSD) ranged from 0.14 to 0.18. In addition, sensitivity tests were conducted for the factors affecting the nighttime AOT to estimate the range of uncertainty in the nighttime AOT retrievals. The results of this study indicate that it is promising to infer AOT using the DNB measaurements over small cities in Korea at night. After further development and refinement in the future, the developed retrieval algorithm is expected to produce nighttime aerosol information which is not operationally available over Korea.

Correlation Between Social Distancing Levels and Nighttime Light (NTL) during COVID-19 Pandemic in Seoul, South Korea Based on The Day-Night Band (DNB) Onboard The Suomi National Polar-Orbiting Partnership (S-NPP) Satellite (코로나19 팬데믹 기간의 서울의 사회적 거리두기 단계 변화와 The Suomi National Polar-Orbiting Partnership (S-NPP) 위성 영상을 이용한 Nighttime Light (NTL) 간의 상관관계)

  • Nur, Arip Syaripudin;Lee, Seulki;Ramayanti, Suci;Han, Ju
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1647-1656
    • /
    • 2021
  • In order to reduce the spread of infection due to COVID-19, South Korea has established a four-step social distancing standard and implemented it by changing the steps based on the rate of confirmed cases. The implementation of social distancing brought about a change in the amount of activity of citizens by limiting social contact such as movement and gathering of people. One of the data that can intuitively confirm this is Night Time Light (NTL). NTL is a variable that can measure the size of the national economy measured using lights captured by satellites, and can be used to understand people's social activities during the night. The NTL visible data is obtained via the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite. 1023 of Suomi data from 1 January 2019 until 26 October 2021 were collected to generate time series of NTL radiance change over Seoul to analyze the correlation with social distancing policy. The results show that implementing the level of social distancing generally decreased the NTL radiance both in spatial disparities and temporal patterns. The higher level of policy, limiting human activities combined with the low number of people who have been vaccinated and the closure of various facilities. Because of social distancing, the differences in human activities affected the nighttime light during the COVID-19 pandemic, especially in Seoul, South Korea. Therefore, this study can be used as a reference for the government in evaluating and improving policies related to efforts reducing the transmission of COVID-19.

Quality Evaluation through Inter-Comparison of Satellite Cloud Detection Products in East Asia (동아시아 지역의 위성 구름탐지 산출물 상호 비교를 통한 품질 평가)

  • Byeon, Yugyeong;Choi, Sungwon;Jin, Donghyun;Seong, Noh-hun;Jung, Daeseong;Sim, Suyoung;Woo, Jongho;Jeon, Uujin;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1829-1836
    • /
    • 2021
  • Cloud detection means determining the presence or absence of clouds in a pixel in a satellite image, and acts as an important factor affecting the utility and accuracy of the satellite image. In this study, among the satellites of various advanced organizations that provide cloud detection data, we intend to perform quantitative and qualitative comparative analysis on the difference between the cloud detection data of GK-2A/AMI, Terra/MODIS, and Suomi-NPP/VIIRS. As a result of quantitative comparison, the Proportion Correct (PC) index values in January were 74.16% for GK-2A & MODIS, 75.39% for GK-2A & VIIRS, and 87.35% for GK-2A & MODIS in April, and GK-2A & VIIRS showed that 87.71% of clouds were detected in April compared to January without much difference by satellite. As for the qualitative comparison results, when compared with RGB images, it was confirmed that the results corresponding to April rather than January detected clouds better than the previous quantitative results. However, if thin clouds or snow cover exist, each satellite were some differences in the cloud detection results.