• Title/Summary/Keyword: S-N line

Search Result 872, Processing Time 0.026 seconds

Multiplication of Infectious Flacherie and Densonucleosis Viruses in the Silkworm, Bombyx mori (가잠의 전염성 연화병 및 농핵병 바이러스 증식에 관한 연구)

  • 김근영;강석권
    • Journal of Sericultural and Entomological Science
    • /
    • v.25 no.2
    • /
    • pp.1-31
    • /
    • 1984
  • Flacherie, as one of the most prevalent silkworm diseases, causes severe economic damage to sericultural industry and its pathogens have been proved to be flacherie virus (FV) and densonucleosis virus (DNV). Multiplications of the viruses in the larvae of the silkworm, Bombyx mori, were studied by the sucrose density gradient centrifugation and electron microscopy. The quantitative and qualitative changes of nucleic acids and proteins were investigated from the midgut and hemolymph in the silkworm larvae infected separately with FV and DNV. The histopathological changes of epithelial cells of infected midgut also were examined by an electron microscope. 1. Purified fractions of FV or DNV in a sucrose density gradient centrifugation yielded one homogenous and sharp peak without a shoulder, suggesting no heterogenous materials in the preparation. Electron microscopy also revealed that FV and DNV were spherical particles, 27nm and 21nm in diameter, respectively. 2. Silkworm larvae showed a decrease in body weight on the 6th day and in midgut weight on the 3rd day after inoculation with FV or DNV. 3. DNA content was higher in the midgut when infected with FV or DNV, but the hemolymph of the infected larvae showed no difference during first 6 days after inoculation, after which DNA concentration declined rapidly. 4. RNA synthesis of silkworm larvae infected separately with FV and DNV was stimulated in the midgut, but RNA content was reduced in the hemolymph at the early stage of virus multiplication. At the late stage of virus multiplication, however, it was extremely reduced in both midgut and hemolymph. 5. The concentration of protein in the midgut and hemolymph of silkworm larvae infected separately with FV and DNV showed no difference from that of the healthy larvae at the early stage of virus multiplication, but it was significantly reduced at the late stage of virus multiplication. 6. There was no difference in the electrophoretic patterns of RNAs extracted from the midgut of healthy or virus-infected larvae. 7. The electrophoresis of proteins extracted from the midgut infected with FV or DNV, when carried out on the 1st and 5th day after virus inoculation, showed no difference from that of the healthy larvae. But, there was an additional band with medium motility in the proteins on the 8th day after virus inoculation, while a band with low mobility shown in the proteins of healthy larvae disappeared in the infected larvae. However, a band with high mobility in the healthy larvae was separated into two fractions in the infected larvae. 8. The electrophoretic pattern of hemolymph proteins of the silkworm larvae infected separately with FV and DNV was similar to that of the healthy larvae, but the concentration of hemolymph proteins in the infected larvae was lower than that of the healthy larvae at the late stage. 9. Two types of inclusion bodies were shown by the double staining of pyronin-methyl green in the columnar cell of the midgut on the 8th day after FV inoculation. 10. Electron microscopy of the infected midgut revealed that the 'cytoplasmic wall' of the goblet cell thickened on the 5th day after FV inoculation and several types of the cytopathogenic structures, such as virus$.$specific vesicles, virus particles, linear structures, tubular structures, and high electron-dense matrices were observed in the cytoplasm of the goblet cell. The virus particles were also observed in the microvilli and the structures similar to spherical virus particles were observed around the virus-specific vesicles, suggesting the virus assembly in the cytoplasm. 11. Fluorescence micrograph of the infected midgut stained with acridine orange showed that the nucleus, the site of DNV multiplication in the columnar cell, enlarged on the 5th day after virus inoculation. 12. Electron microscopic examination of DNV infected midgut revealed that the nucleolus of the columnar cell was broken into granules and those granules dispersed into apical region of the nucleus on the 5th day after virus inoculation. On the 8th day after inoculation, it was also observed that the nucleus of the columnar cell was full with the high electron-dense virogenic stroma which were similar to virus particles. These facts suggest that the virogenic stroma were the sites of virus assembly in the process of DNV multiplication.

  • PDF

Time Course Variation of Vitamin $C_3$ Content in Leg Skin of Broiler Chicks Exposed to Different Dose of UVB Light (자외선의 상이한 선양을 조사한 브로일러 병아리의 다리 피부중 비타민 $C_3$ 함양의 경시적 변화)

  • 장윤환;김강수;여영수;강훈석;조인호;배은경
    • Korean Journal of Poultry Science
    • /
    • v.20 no.2
    • /
    • pp.93-105
    • /
    • 1993
  • This study was carried out to determine the concentrations of previtamin D$_3$(PreD$_3$), lumisterol$_3$(L3), tachystero1$_3$(73), vitamin D$_3$(VD$_3$) and provitamin D$_3$(ProD$_3$) in leg skins of broiler chicks exposed to UVB lights (maximum intensity at 297 nm) with dose of 0.204 or 0.409 mJ/$\textrm{cm}^2$(30 or 60 min irradiation) . The broiler Hubbard line day old chicks(2 dose $\times$9 elapsed time $\times$4 replica+10 control=82) were fed VD-deficient diet for 31 days in a windowless subdued light room. The skin was collected at 0, 6, 12, 18, 30, 42, 66, 90 or 138 hr after UVB irradiation. The skin lipid was extracted by 9% ethyl acetate/n-hexane, and the fraction of VD$_3$ and its analogues was purified by Sep-Pak silica cartridge. The straight phase HPLC was utilized to analyze ProD$_3$ and its products. The mole %(absolute level expressed in ng/$\textrm{cm}^2$) of PreD$_3$ in leg skin (epidermis+dermis) was 4.67%(44 ng/$\textrm{cm}^2$) or 3.97%(37 ng/$\textrm{cm}^2$) right after UVB irradiation by 0.204 or 0.409 mJ/$\textrm{cm}^2$(30 or 60 min) at 15 cm distance, respectively. It content in leg skin at 0 hr after exposure was 7.24%(12 ng/$\textrm{cm}^2$) or 0.92%(9 ng/$\textrm{cm}^2$), respectively. The increase in irradiation dose did not affect proportionally the If synthesis.73 concentration in leg skin was 0.58%(S ng/$\textrm{cm}^2$) or 0.57%(6 ng/$\textrm{cm}^2$), respectively 0 hr after irradiation. The VD$_3$ in leg skin of birds exposed to UVB light with dose of 0.204 or 0.409 mJ/$\textrm{cm}^2$ was 2.13% (21 ng/$\textrm{cm}^2$) or 0.97% (16ng/$\textrm{cm}^2$), respectively at 0 hr after exposure, 2.72%(26ng/$\textrm{cm}^2$) or 3.84%(37ng/$\textrm{cm}^2$), respectively at 6 hr, and 4.30% ((33ng/$\textrm{cm}^2$) or 6.40%(76ng/$\textrm{cm}^2$), respectively at 12 hr. The peak concentration of VD$_3$ was presented at 18 or 30 hr when 0.204 or 0.409 mJ/$\textrm{cm}^2$) was treated, respectively. It was shown that 18~30 hr were necessary for the thermal conversion of PreD$_3$ into VD$_3$ in the leg skin of broiler chicks. The ProD$_3$ contents in leg skins of negative control, 0.204 mJ/$\textrm{cm}^2$ and 0.409 mJ/$\textrm{cm}^2$ treated birds were 966, 948 and 815 ng/$\textrm{cm}^2$, respectively at right before and after UVB exposure. It was estimated that 18 or 151 ng/$\textrm{cm}^2$ of ProD$_3$ was isomerized to PreD$_3$, L$_3$, T$_3$ and VD$_3$ when exposed to 0.204 or 0.409 mJ/$\textrm{cm}^2$, respective)y. Consequently it was shown that when double dose of UVB light was applied to irradiate the chick body, more but not double synthesis of VD$_3$ and its analogues was occured in leg skin of brolier chicks.

  • PDF