• 제목/요약/키워드: S-N fatigue

검색결과 598건 처리시간 0.031초

스프링구동 메커니즘의 충격 하중을 받는 링크부재의 내피로 특성 향상 (Improvement of Fatigue-Proof Characteristics of Link Members Under Impact Loadings by a Spring-Actuated Mechanism)

  • 안길영;박상후;이부윤;김원진;오일성
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.158-164
    • /
    • 2003
  • The air circuit breaker (ACB) with the spring-actuated mechanism was studied to improve the fatigue-proof characteristics of its link. The low-cycle fatigue fracture phenomenon occurred on the critical link, called h-link, of ACB from the repeated rapid closing and opening operations. To analyze the cause of failure, dynamic FE-analysis on the b-link part of ACB was performed considering tile velocity and acceleration of the links per time as boundary conditions, which were obtained by using ADAMS. Also, the S-N curve obtained by experiments was used to investigate requirement on the fatigue-proof characteristics. Then, to reduce the maximum tensile stress on the h-link, three types of h-link were examined and one of them was selected.

고장력강의 부식피로에 관한 연구 (Study on corrosion fatigue of high strength steel)

  • 유헌일;천기정;택목양삼
    • 오토저널
    • /
    • 제5권1호
    • /
    • pp.32-44
    • /
    • 1983
  • In case of $K_{Imax}$ < $K_{Iscc}$, the corrosion fatigue of high strength steel in 0.1N $H_{2}$S $O_{4}$ solution and 3.5% salt water is as follows. 1. The fatigue life shortens in order of 3.5% salt water and 0.1N $H_{2}$S $o_{4}$ solution. 2. The fatigue crack growth rate in air is obtained as the following equation. (dc/dN)$_{atr}$=7.23*10$^{-6}$ (.DELTA. K)$^{2.23}$ 3. The corrosion fatigue crack growth rate in environment is divided into three regions, that is, First Region, Second Region and Third Region from the small cyclic stress intensity. 4. The formation rate of the active surface on metal is slower than the mechano-chemical reaction rate in First Region. The crack growth rate depends on time and the cyclic stress intensity and is expressed as the following equation. (dc/dN)$_{I}$=C(/DELTA. K)$^{\delta}$ 5. The formation rate of the active surface is faster than the mechano-chemical reaction rate in Second Region and the synergistic effect by stress and corrosion becomes slow. In case the fatigue load is large, we have the critical crack growth rate which is not related to the cyclic stress intensity. 6. The corrosion crack growth rate by the mechano-chemical reaction is the same in $H_{2}$S $O_{4}$ solution and salt water, so Hydrogen accelerates the crack growth. 7. The environment has no effect on the corrosion fatigue crack growth rate in Third Region. 8. In First Region and Second Region, dimple is observed on the fatigue fracture surface in 0.1N $H_{2}$S $O_{4}$ solution. 9. The striation is observed in any environment as in air in Third Region and its interval approximately coincide with the crack growth rate.ate.e.e.

  • PDF

Experimental study on the fatigue performance of aluminum foam sandwich with 304 stainless steel face-sheet

  • Yan, Chang;Jing, Chuanhe;Song, Xuding
    • Steel and Composite Structures
    • /
    • 제39권3호
    • /
    • pp.229-241
    • /
    • 2021
  • This work focused on aluminum foam sandwich (AFS) with different foam core densities and different face-sheet thicknesses subjected to constant amplitude three-point bending cyclic loading to study its fatigue performance. The experiments were conducted out by a high frequency fatigue test machine named GPS-100. The experimental results showed that the fatigue life of AFS decreased with the increasing loading level and the structure was sensitive to cyclic loading, especially when the loading level was under 20%. S-N curves of nine groups of AFS specimens were obtained and the fatigue life of AFS followed three-parameter lognormal distribution well. AFS under low cyclic loading showed pronounced cyclic hardening and the static strength after fatigue test increased. For the same loading level, effects of foam core density and face-sheet thickness on the fatigue life of AFS structure were trade-off and for the same loading value, the fatigue life of AFS increased with aluminum foam core density or face-sheet thickness monotonously. Core shear was the main failure mode in the present study.

A mathematical model to predict fatigue notch factor of butt joints

  • Nguyen, Ninh T.;Wahab, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제6권4호
    • /
    • pp.467-471
    • /
    • 1998
  • A mathematical model is developed to predict the fatigue notch factor of butt welds subject to number of parameters such as weld geometry, residual stresses under dynamic combined loading conditions (tensile and bending). Linear elastic fracture mechanics, finite element analysis, dimensional analysis and superposition approaches are used for the modelling. The predicted results are in good agreement with the available experimental data. As a result, scatters of the fatigue data can be significantly reduced by plotting S-N curve as ($S{\cdot}K_f$) vs. N.

침탄 및 고주파 열처리한 치차의 굽힘피로강도 평가 (Bending Fatigue Strength of Carburized and Induction Hardened Gears)

  • 김완두;최병익;한승우;김정훈
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.1-8
    • /
    • 1994
  • To enhance the strength of gears for transmission, Generally caburizing heat treatment is applied. But there are some problems in this technology the distortion of gears during heat treatment process, and the discontinuity of manufacturing process. For these reasons, the high frequency induction hardening process is widely used. This method is one of the surface hardening process to improve the wear resistance and fatigue life of the machine components. In this study, to compare the bending fatigue strength of caburized gear with that of induction hardened gear, bending fatigue testing of gears with two different cases was performed by using an electrohydraulic servo-controlled fatigue testing machine and double tooth bending fatigue test fixture. Fatigue life distributions at constant stress levels were established directly from fatigue data. For gear design, the fatigue strength distribution at specified life is more important. This distribution is obtained by statical transformation from fatigue life distribution. Reliability of bending fatigue strength was estimated by P-S-N curves and Weibull distribution.

  • PDF

등가구조응력법을 이용한 철도차량 용접대차프레임의 피로해석 (Fatigue Analysis of Welding Bogie Frames for Rolling Stocks Using The equilibrium-equivalent structural stress method)

  • 김철수;안승호;정광우;전영석;박춘수;김상수;장천수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1243-1248
    • /
    • 2010
  • Fatigue design and evaluation of welded joints are typically carried out by weld classification approach in which a family (theoretically infinite) of parallel nominal stress based S-N curves are used according to joint types and loading modes as well as extrapolation-based hot spot stress. Traditional finite element methods are not capable of consistently capturing the stress concentration effects on fatigue behavior due to their mesh-sensitivity in stress determination at welds resulted from notch stress singularity. The extrapolated hot spot stresses tend vary, depending on the element sizes, types, joint types, and loading mode. however, the equilibrium-equivalent structural stress method(E2S2) has been recently developed through several joint industry projects as a robust method to analyze welded components using finite element analysis. This method has been proven effective in correlating a large amount of published fatigue test results in the literature such as master S-N curve and has used for evaluating the fatigue life of welding components. In this study, fatigue analysis of the welding bogie frame is examined using E2S2 method with master S-N curve.

  • PDF

TBM 커터헤드의 구조안정성 검토를 위한 피로해석 (Fatigue analysis for structural stability review of TBM cutterhead)

  • 최순욱;강태호;이철호;장수호
    • 한국터널지하공간학회 논문집
    • /
    • 제22권5호
    • /
    • pp.529-541
    • /
    • 2020
  • 기계화터널시공의 대표적인 장비인 TBM의 커터헤드는 타 장비에 비해 굴착 중 발생하는 하중이 매우 크며, 마모가 발생하여 단면이 손실되는 작업환경을 가지고 있어 피로파괴에 의한 설계검토가 필요하지만, TBM커터헤드에 대한 피로해석을 수행한 사례는 찾기 어렵다. 본 연구에서는 직경 8.2 m인 커터헤드를 대상으로 안전수명설계 개념으로 S-N커브를 이용하여 응력-수명 설계 검토를 수행하였다. 또한 건설장비의 피로설계방법과 피로손상도를 평가하는 방법에 대해 소개하고 직경 8.2 m의 TBM 커터헤드를 대상으로 피로해석을 수행한 결과를 설명하였다. S-N curve는 피로 설계를 하는 데에 있어서 핵심적인 역할을 하는 것을 알 수 있었으며, 피로 하중을 받고 있는 구조물이 현재 시점에서 어느 정도의 피로 손상을 받고 있는지를 평가하는 데에도 사용될 수 있다. 앞으로 건설장비에서도 장비를 사용하는 동안 어떤 시점에서 피로문제가 발생하는지와 장비의 안전 점검은 언제 실시하는 것이 효과적인지 등에 대한 정보를 파악하는 안전수명설계 개념을 도입하는 것이 필요하다.

Al-Si-Ca 합금 폼의 피로 거동에 대한 두께 효과 (Thickness Effect on Compressive Fatigue Behavior of Al-Si-Ca Alloy Foam)

  • 김일현;마이눌;김엄기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.179-182
    • /
    • 2007
  • The compressive fatigue tests on the closed cell Al-Si-Ca alloy foams with two different thicknesses were performed using a load ratio of 0.1. The quasi-static and cyclic compressive behaviors were obtained respectively. The fatigue stress-life (S-N) curves were evaluated from the obtained cyclic compressive behaviors. S-N curves were presented for the onset of progressive shortening. It turned out that the fatigue strength showed higher value for the thicker foam and the onset of shortening of thinner foam took place earlier. The crushing was found to initiate in a single band which broadens gradually with additional fatigue cycles. Progressive shortening of the specimen took place due to a combination of low cycle fatigue failure and cyclic ratcheting.

  • PDF

장기운용항공기 구조물의 잔여 피로수명예측 기법 (An Evaluation of Fatigue Life for Aging Aircraft Structure)

  • 이은경;정유인;김상식
    • 한국재료학회지
    • /
    • 제25권10호
    • /
    • pp.516-522
    • /
    • 2015
  • Aging aircraft structures are inevitably exposed to environment for a long time facing many potential problems, including corrosion and wide spread fatigue damage, which in turn cause the degradation of flight safety. In this study, the environmental surface damages on aging aircraft structures induced during service were quantitatively analyzed. Additionally, S-N fatigue tests were performed with center hole specimens extracted from aging aircraft structures. From the results of quantitative analyses of the surface damages and fatigue tests, it is concluded that corrosion pits initiated during service reduce the fatigue life significantly. Finally, using the fracture mechanics and the EIFS (equivalent initial flaw size) concepts, the remaining fatigue life was predicted based on actual fatigue test results.

가속수명시험을 위한 KTX고속열차 구조물의 S-N 선도 추정 (S-N Curve Deduction of a KTX High-Speed Train Structure for an Accelerated Life Testing)

  • 정달우;최낙삼;박수한
    • 대한기계학회논문집A
    • /
    • 제33권4호
    • /
    • pp.388-395
    • /
    • 2009
  • An accelerated fatigue test is essentially required to maintain the reliability of the actual structures of KTX under operation conditions. However, actual fatigue life cannot be obtained because the conventional fatigue tests are not adequate to the real load conditions. Moreover foreign component makers have not provided data of the loading stresses (S) versus cycles at the failure (N). In this study, we suggested a deduction method of the S-N curve for establishing an accelerating test under various load levels. Load history was acquired from the field tests. A Rainflow method was used on the cycle counting of the field load data. After that, an S-N curve was obtained through the iteration process under the condition that the damage index satisfies to 1 in the Miner's rule. The deduced S-N curve was applied to the performance evaluation of Korean-made sealed knuckles compared with imports.