• Title/Summary/Keyword: S parameters defect

Search Result 88, Processing Time 0.031 seconds

A Preliminary Study on the Lamination Characteristics of Inconel 718 Superalloy on S45C Structural Steel using LENS Process (LENS 공정을 이용한 Inconel 718 초합금의 S45C 구조용강 위 적층 특성 고찰에 관한 기초 연구)

  • Kim, Hyun-Sik;Lee, Hyub;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.16-24
    • /
    • 2021
  • A laser-engineered net shaping (LENS) process is a representative directed energy deposition process. Deposition characteristics of the LENS process are greatly dependent on the process parameters. The present paper preliminarily investigates deposition characteristics of Inconel 718 superalloy on S45C structural steel using a LENS process. The influence of process parameters, including the laser power and powder feed rate, on the characteristics of the bead formation and the dilution in the vicinity of the deposited region is examined through repeated experiments. A processing map and feasible deposition conditions are estimated from viewpoints of the aspect ratio, defect formation, and the dilution rate of the deposited bead. Finally, an appropriate deposition condition considering side angle, deposition ratio, and buy-to-fly (BTF) is predicted.

The Correlation between the Degree of Enophthalmos and the Extent of Fracture in Medial Orbital Wall Fracture Left Untreated for Over Six Months: A Retrospective Analysis of 81 Cases at a Single Institution

  • Sung, Yun Sik;Chung, Chan Min;Hong, In Pyo
    • Archives of Plastic Surgery
    • /
    • v.40 no.4
    • /
    • pp.335-340
    • /
    • 2013
  • Background In patients with medial orbital wall fracture, predicting the correlation between the degree of enophthalmos and the extent of fracture is essential for deciding on surgical treatment. We conducted this retrospective study to identify the correlation between the two parameters. Methods We quantitatively analyzed the correlation between the area of the bone defect and the degree of enophthalmos on computed tomography scans in 81 patients with medial orbital wall fracture who had been left untreated for more than six months. Results There was a significant linear positive correlation between the area of the medial orbital wall fracture and the degree of enophthalmos with a formula of E=0.705A+0.061 (E, the degree of enophthalmos; A, the area of bone defect) (Pearson's correlation coefficient, 0.812) (P<0.05). In addition, that there were no cases in which the degree of enophthalmos was greater than 2 mm when the area of the medial orbital wall fracture was smaller than $1.90cm^2$. Conclusions Our results indicate not only that 2 mm of enophthalmos corresponds to a bone defect area of approximately $2.75cm^2$ in patients with medial orbital wall fracture but also that the degree of enophthalmos could be quantitatively predicted based on the area of the bone defect even more than six months after trauma.

Study on the Relationship Between Emission Signals and Weld Defect for In-Process Monitoring in CO2 Laser Welding of Zn-Coated Steel (아연코팅 강판의 CO2 레이저용접시 인프로세스 모니터링을 위한 측정신호와 용접결함과의 관련성 연구)

  • Kim, Jong-Do;Lee, Chang-Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1507-1512
    • /
    • 2010
  • In this study, the plasma induced by $CO_2$ laser lap welding of 6t Zn coated steel used for ship building was measured using photodiodes and a microphone. Then, the welding phenomenon with gap clearance of lap joint was compared with RMS-treated signal. Thus, we found that intensity of the RMS-treated signal increased with Zn vaporization; further, the presence of defects results in rapid variations with the RMS value as a function of lap-joint parameters. Besides, the FFT value of the raw signal with variations of changing welding parameters was calculated, and then the calculated FFT frequency value was set as the bandwidth of digital filter for a more accurate in-process monitoring. The RMS values were acquired by filtering the raw signal. By matching the weld beads and the calculated RMS values, we confirmed that there is a strong relationship between the signals and the defects.

Determination of Welding Pressure in the Porthole Die Extrusion of Improved Al7003 Hollow Section Tubes (포트홀 다이를 이용한 개량된 Al7003 중공압출재의 접합압력결정)

  • Jeong C. S.;Jo H. H.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.74-77
    • /
    • 2000
  • Porthole die extrusion has a great advantage in the forming of hollow section tubes difficult to produce by conventional extrusion with a mandrel on the stem. Because of the complicated structure of die assembly, extrusion process as a forming of hollow section tubes has been investigated experimentally Therefore, analytic approaches that are useful in profitable die design and in the improvement of productivity are inevitably demanded Welding strength is affected by many parameters, which are such as extrusion ratio, extrusion speed, die shape, porthole number, bearing length, billet temperature and mandrel shape. In this paper, the parameters, which are such as billet temperature, bearing length and tube thickness, are examined. The welding pressures are examined through 3D simulation of non steady state and compared with experimental results.

  • PDF

Critical Parameters to Improve the Fatigue Properties in the High Carbon Steel Wires (고 강도 극 세선의 피로 특성 향상을 위한 특정 인자 제시)

  • Yang, Y.S.;Bae, J.G.;Park, C.G.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.91-96
    • /
    • 2008
  • The governing parameters affecting the fatigue properties have been investigated experimentally in the high carbon steel wires with 0.94 wt.%C. In order to find the crucial factors, the advanced analysis techniques such as optical 3-D profiler, focused ion beam(FIB) and transmission electron microscope(TEM) were used. The two-type steel wires with different drawing strain were fabricated. The fatigue properties were measured by hunter rotating beam tester, specially designed for thin-sized steel wires. It was found that the fatigue properties of the steel wires with high drawing strain was higher than that with other wires because of low residual stress and high adhesion condition of brass coating layer.

The effect of working parameters on removal of casting gold alloy using a piezoelectric ultrasonic scaler with scaler tip in vitro (압전방식 초음파 치석제거기의 작업조건에 따른 치과주조용 합금의 삭제에 관한 연구)

  • Cha, Kuk-Bong;Kim, Won-Kyung;Lee, Young-Kyoo;Kim, Young-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.2
    • /
    • pp.139-148
    • /
    • 2009
  • Purpose: Ultrasonic scalers have been widely used for removing biofilm which is considered as major etiologic factor of periodontal disease. The purpose of this study was to evaluate the effect of working parameters of piezoeletric ultrasonic scaler with scaler tip (No. 1 tip) on casting gold alloy removal. Methods: Type III dental casting gold alloy (Firmilay$^{circledR}$, Jelenko Inc, CA, USA) was used as substitute for tooth substance. Piezoeletric ultrasonic scaler and No.1 scaler tip (P-Max$^{circledR}$, Satelec, France) were selected. The selected working parameters were mode (P mode, S mode), power setting (2, 4, 8) and lateral force (0.5 N, 1.0 N, 2.0 N). The effect of working parameters was evaluated in terms of ablation depth, ablation width and ablation area. Results: Mode influenced ablation depth and ablation area. Power also influenced ablation depth and ablation area. Especially, Power 2 and power 8 showed statistically significant difference. Lateral force had influence on ablation width, and 0.5 N resulted significant increase compared with 1.0 N and 2.0 N. Ablation depth was influenced by mode, power and lateral force and defect width was influenced by lateral force. Ablation area was influenced by mode and power. Conclusions: It can be concluded that the use of piezoelectric ultrasonic scaler with No. 1 scaler tip in S mode and high power may result in significant loss of tooth substance.

Alternation of Sleep Structure and Circadian Rhythm in Alzheimer's Disease (알츠하이머 치매에서 수면구조 및 일주기리듬의 변화)

  • Sohn, Chang-Ho
    • Sleep Medicine and Psychophysiology
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2002
  • Alzheimer's disease (AD) is one of the most common and devastating dementing disorders of old age. Most AD patients showed significant alternation of sleep structure as well as cognitive deficit. Typical findings of sleep architecture in AD patients include lower sleep efficiency, higher stage 1 percentage, and greater frequency of arousals. The slowing of EEG activity is also noted. Abnormalities in REM sleep are of particular interest in AD because the cholinergic system is related to both REM sleep and AD. Several parameters representing REM sleep structure such as REM latency, the amount of REM sleep, and REM density are change in patients with AD. Especially, measurements of EEG slowing during tonic REM sleep can be used as an EEG marker for early detection of possible AD. In addition, a structural defect in the suprachiasmatic nucleus is suggested to cause various chronobiological alternations in AD. Most of alternations related to sleep make sleep disturbances common and disruptive symptoms of AD. In this article, the author reviewed the alternation of sleep structure and circadian rhythm in AD patients.

  • PDF

A Gating System Design to Reduce the Gas Porosity for Die Casting Mobile Device (다이캐스팅 모바일 기기의 기공결함 감소를 위한 유동구조 설계)

  • Jang, Jeong Hui;Kim, Jun Hyung;Han, Chul Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.86-92
    • /
    • 2021
  • Usually, the die-cast components used in small mobile devices require finishing processes, such as computer numerically controlled coating. In such cases, porosity is the most important defect. The shape of the molten aluminum that passes through the runner and gate in a mold is the one of the factors that influences gas porosity. To define the spurt index, which numerically indicates the shape of molten aluminum after the gate, Reynolds number and Ohnesorge number are used. Before die fabrication, computer-aided engineering analysis is performed to optimize the filling pattern. Finally, X-ray and surface inspection are performed after casting and machining to evaluate how the spurt index affects porosity and other product parameters. Based on the results obtained herein, a new gating system design process is suggested.

Designing an Evaluation Method for the in-situ Impact Strength of Rollable Devices

  • Hyojung Son;Ki-Yong Lee;Byoung-Seong Jeong
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.148-153
    • /
    • 2024
  • In this study, a methodology for evaluating impact strength in rollable devices was developed, focusing on measuring impact strength and evaluating rolling and unrolling durability simultaneously, with findings reported from tests on a real demonstration unit. The study utilized a flexible and rollable polyimide (PI) substrate for the evaluations. The chosen parameters for this methodology were a flat-type impactor, weights of 300 g, 500 g, and 1000 g, a rolling shaft ranging from 30 R to 5 R, and the positioning of the impactor. The results revealed that the difference in defect rates when comparing the 300 g and 500 g weights was minimal. However, the adoption of a 1000 g weight markedly increased the defect count due to damage to the PI film's surface. Furthermore, an uptick in rolling and unrolling cycles led to more pronounced surface scratches on the PI film. These methods and findings are poised to make a substantial contribution towards refining reliability testing for a wide array of rollable device applications, including smartphones, watches, pads, and wearable technology.

Evaluation Methodology and Comprehensive Performance Evaluation for Optimization of BNR Wastewater Treatment (BNR 하수처리 최적화를 위한 평가방법론 및 Comprehensive Performance Evaluation)

  • Shin, Hyung-Soo;Chang, Duk;Ryu, Dong-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.417-430
    • /
    • 2009
  • A BNR comprehensive performance evaluation (BNR CPE) system was established employing system-oriented evaluation methodology for biological nutrient removal (BNR) processes based on the CPE techniques developed by U.S. EPA for evaluation of conventional biological processes. The BNR CPE system applied to five domestic BNR plants adopting $A^2/O$ process confirmed that all target plants except the smallest one had not any serious defective performance and process stability was enhanced with increasing plant size. The system also clearly verified relatively poor performances in anoxic reactors without exception mainly due to influent carbon limit rather than functional defect. Consistent good performances were confirmed even during both winter season and wet weather generally known to be difficult to achieve satisfactory removals. Presentation of evaluation results by modified radar chart system simplified and clarified the evaluation and analysis procedures. The BNR CPE system could not only discover readily the causes of present and prospective poor performances but also facilitate the suggestion of their optimization options. Mutual effect and cause-and-effect among operation parameters and unit processes were also found easily using the evaluation system. The system justified that the adverse effect of defective operating parameters could be compensated by other favorable parameters, especially in anaerobic and anoxic reactors as well as during the winter season.