• Title/Summary/Keyword: S밴드 도플러 레이더

Search Result 3, Processing Time 0.022 seconds

UHF and S-Band Radar Networks (UHF와 S밴드 레이더 관측망 구축)

  • Kim, Park-Sa;Kim, Kwang-Ho;Campistrom, Bernard;Yoon, Hong-Joo;Kwon, Byung-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.305-312
    • /
    • 2018
  • The quality of the radar and profiler network was estimated to forecast difficult meteorological situations. A network of UHF Doppler wind profilers and Doppler weather radars have been deployed all over the Korean Peninsular, with dense spatial resolution between instruments. The radar network allows to retrieve the three dimensional dynamics and to analyze the numerical model outputs at small and meso scales. This work has seldom been performed in any other place of the world, with such a high resolution. The wind field from radar network is a good agreement with the background wind fields based on the numerical modeling. This study will be helpful to forecast severe weathers as well as local meteorological phenomena.

Preliminary Analysis of Intensive Observation Data Produced by the National Center for Intensive Observation of Severe Weathers (NCIO) in 2002 (2002년 국가 악기상 집중관측센터에서 생산된 집중관측자료의 분석 및 활용)

  • Kim, Baek-Jo;Cho, Chun-Ho;Nam, Jae-Cheol;Chung, Hyo-Sang;Kim, Jeong-Hoon
    • Atmosphere
    • /
    • v.13 no.4
    • /
    • pp.57-70
    • /
    • 2003
  • The National Center for Intensive Observation of Severe Weathers (NCIO) as a part of METRI's principal project "Korea Enhanced Observing Period; KEOP" was established at Haenam Weather Observatory in order to effectively monitor and observe heavy rainfall in summer, which is essential for the identification of the structure and evolution mechanism of mesoscale severe weather system. The intensive field-based experiments in 2002 within southwestern Korea toward various meteorological phenomena ranging from heavy rainfall to snowfall were conducted in collaboration with KMA(Korea Meteorological Administration) and universities. In this study, preliminary analysis results using intensive observation data obtained from these experiments are presented together with the introduction of NCIO and its operational structure.

Maritime Atmospheric Boundary Layer Observed By L-band Doppler radar (도플러 레이더를 이용한 해안지역의 대기경계층 분석 연구)

  • Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.977-984
    • /
    • 2000
  • Atmospheric boundary layer over equatorial maritime continent was analyzed with Doppler radar. An L-band (1357.5 MHz) boundary layer radar (BLR) has been in continuous successful operation in Selpong, Indonesia(6.45, 106.7E), since November 1992. The performance of the BLR with respect to the observation height range and the wind measurement reliability has been examined on the basis of simultaneous meteorological observations. In the dry season (10-12 October 1993), we have found two types of strong echo structures appearing systematically in the equatorial planetary boundary layer with diurnal variations on clear days. The first type is the striking appearance of a strong echo layer ascending from below 300 m (in the morning) to above 3-5 km (in the afternoon), which is identified with a diurnal variation of the top of the mixing planetary boundary layer. As expected, it is higher in the Indonesian equatorial region than in midlatitudes. Another type is a layered echo appearing at 2-3 km heights from nighttime to morning, which seem to be coincident with humidity gaps. In the rainy season (20-21 February 1994), the height of the atmospheric mining was lower than that in the dry season.

  • PDF