• 제목/요약/키워드: Ryanodine

검색결과 97건 처리시간 0.036초

Reconstitution of Sarcoplasmic Reticulum-$Ca^{2+}$ Release Channels into Phospholipid Vesicles : Investigation of Conditions for Functional Reconstitution

  • Yang, In-Sik;Lee, Hee-Bong
    • BMB Reports
    • /
    • 제28권2호
    • /
    • pp.129-137
    • /
    • 1995
  • The ryanodine-receptor $Ca^{2+}$ release channel protein in the sarcoplasmic reticulum membrane of rabbit skeletal muscle plays an important role in muscle exitation-contraction (E-C) coupling. Various types of detergents were tested, including Chaps, cholate, octylglucoside, Zwittergents, Mega-9, Lubrol PX, and Triton X-100 for solubilization of this protein. Among these, Chaps and Triton X-100 were found to optionally solubilize the channel complex. Optimum conditions for this solubilization were pH 7.4 with a salt concentration of 1 M. The addition of phospholipid in the solubilization step helped in stabilizing the protein. The purification of the receptor was performed using sucrose density gradient centrifugation. Various methods [dilution, freeze-thaw, adsorption (Biobeads), and dialysis] were investigated to incorporate the Chaps-solubilized and purified $Ca^{2+}$ release channel protein into liposomes made from different types of phospholipids. Of these, a combined method consisting of a dialysis, freeze-thaw and sonication steps yielded the best results. Reconstituted vesicles produced by this method with 95% phosphatidylcholine (from soybean extract) had good function.

  • PDF

Identification of binding motifs for skeletal ryanodine receptor and triadin

  • Lee, Jae-Man;Kim, Do-Han
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.66-66
    • /
    • 2003
  • In skeletal muscle cells, depolarization of the transverse tubules (T-tubules) results in Ca$\^$2+/ release from the sarcoplasmic reticulum (SR), leading to elevated cytoplasmic Ca$\^$2+/ and muscle contraction. This process has been known as excitation-contraction coupling (E-C coupling). Several proteins, such as the ryanodine receptor (RyR), triadin, junctin, and calsequestrin (CSQ), have been identified to be involved in the Ca$\^$2+/ release process. However, the molecular interactions between the SR proteins have not been resolved. In the present study, the mechanisms of interaction between RyRl and triadin have been studied by in vitro protein binding and $\^$45/Ca$\^$2+/ overlay assays. Our data demonstrate that the intraluminal loop II of RyR1 binds to triadin in Ca$\^$2+/-independent manner. Moreover, we could not find any Ca$\^$2+/ binding sites in the loop II region. GST-pull down assay revealed that a KEKE motif of triadin, which was previously identified as a CSQ binding site (Kobayasi et al.,2000 JBC) was also a binding site for RyR1. Our results suggest that the intraluminal loop II of RyR could participate in the RyR-mediated Ca$\^$2+/ release process by offering a direct binding site to luminal triadin.

  • PDF

수축과 활동전압의 Staircase 현상에 대한 Ca-전류 및 세포내 $Ca^{2+}$ 농도 변화의 영향 (Effects of the Changes in Ca-current and Intracellular Ca-concentration on the Contraction and Action Potential Staircase)

  • 박춘옥;서인석;호원경;엄융의;김우겸
    • The Korean Journal of Physiology
    • /
    • 제23권2호
    • /
    • pp.301-312
    • /
    • 1989
  • It well known that the magnitude of contraction and the shape of action potential depend upon the stimulation frequency and the duration of resting period (positive and negative staircase). Although the underlying mechanism of the staircase phenomenon is not fully understood, it has been suggested that staircase could be related to the intracllular $Ca^{2+}$ concentration. In order to elucidate the role of intracellular $Ca^{2+}$ on the contraction and action potential staircases, we examined the effects of 1 mM 4-aminopyridine (4-AP), 0.5 uM verapamil, 1 uM ryanodine, or reduction of extracellular Na concentration to 30% $(substituted\;by\;equimolar\;Li^+)$ in small atrial strips of the rabbit $(3{\times}10\;mm)$. The results obitained were as follows; 1) When the stimulation frequency was increased from 0.1 Hz to 2 Hz, positive staircase of the contraction and elevation of plateau level in action potential were found in control and the conditions of Na reduction and treatments of 4-AP, verapamil and ryanodine. 2) When stimulation frequency returned to 0.1 Hz from 1 min rest just after 2 Hz stimulation fer 1 min, the magnitudes of initial few contractions were larger than that of steady state contraction (post-rest potentiation) except, ryanodine or Na-reduction groups. 3) Negative staircase of contraction was developed in control and 4-AP group at post-rest 0.1 Hz stimulation and the plateau level of the action potential was decreased at the same time. But the reduction of contraction or the plateau level was much smaller in 4-AP group and than in control. From the above results it can be concluded that contraction and action potential staircase is dependent upon transmembrane $Ca^{2+}-current\;and\;Ca^{2+}$release from the SR.

  • PDF

α2-Adrenoceptor Agonists의 흰쥐 대동맥 이완 작용 (Relaxant Actions of α2-Adrenoceptor Agonists in Rat Aorta)

  • 조인국;이상우;강형섭;서형석;김진상
    • 대한수의학회지
    • /
    • 제43권3호
    • /
    • pp.361-371
    • /
    • 2003
  • The vasorelaxant actions and blood pressure lowering of the ${\alpha}_2$-adrenoceptor agonists (${\alpha}_2$-AAs) clonidine and xylazine were investigated in rat isolated aortic rings and anesthesized rats. Both clonidine and xylazine produced a concentration-dependent inhibition of the sustained contraction induced by norepinephrine (NE), but not by KCl. NE-induced contractions were attenuated partly by nifedipine or verapamil, voltage dependent $Ca^{2+}$ channel blockers. These $Ca^{2+}$ channel blockers-resistant contractions were abolished by clonidine or xylazine. Inhibitory effects of a ${\alpha}_2$-AAs on contractions could be reversed by ryanodine, an intracellular $Ca^{2+}$, transport blocker, and tetrabutylammonium (TBA), a $Ca^{2+}$ activated $K^+$ channel blocker, but not by nifedipine, glibenclamide or removal of extracellular $Ca^{2+}$ and endothelium. Moreover, ${\alpha}_2$-AAs produced relaxation in NE-precontracted isolated intact aortic rings in a concentration-dependent manner, but not in KCl-precontracted rings. The relaxant effects of ${\alpha}_2$-AAs were inhibited by ryanodine and TBA, but not by nifedipine, glibenclamide, N (G)-nitro-L-arginine (L-NNA), N(omega)-nitro-L-arginine methyl ester (L-NAME), aminoguanidine (AG), 2-nitro-4-carboxyphenyl N,N-diphenylcarhurnte (NCDC), lithium sulfate, staurosporine or removal of extracellular $Ca^{2+}$ and endothelium. In vivo, infusion of xylazine elicited significant decrease in anerial blood pressure. This xylazinelowered blood pressure was completely inhibited by the intravenous injection of TBA, but not by the intravenous injection of glibenclamide, L-NNA, L-NAME, AG, nifedipine, lithium sulfate or saponin.. These findings showed that the receptor-mediated and ${\alpha}_2$-adrenoceptor A-stimulated endothelium-independent vasorelaxant effect may be explained by decreasing intracellular $Ca^{2+}$ release and activation of $Ca^{2+}$-activated $K^+$ channels, which may contribute to the hypotensive effects of ${\alpha}_2$-AAs in rats.

$Ca^{2+}$-induced $Ca^{2+}$ Release from Internal Stores in INS-1 Rat Insulinoma Cells

  • Choi, Kyung-Jin;Cho, Dong-Su;Kim, Ju-Young;Kim, Byung-Joon;Lee, Kyung-Moo;Kim, Shin-Rye;Kim, Dong-Kwan;Kim, Se-Hoon;Park, Hyung-Seo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권1호
    • /
    • pp.53-59
    • /
    • 2011
  • The secretion of insulin from pancreatic ${\beta}$-cells is triggered by the influx of $Ca^{2+}$ through voltage-dependent $Ca^{2+}$ channels. The resulting elevation of intracellular calcium ($[Ca^{2+}]_i$) triggers additional $Ca^{2+}$ release from internal stores. Less well understood are the mechanisms involved in $Ca^{2+}$ mobilization from internal stores after activation of $Ca^{2+}$ influx. The mobilization process is known as calcium-induced calcium release (CICR). In this study, our goal was to investigate the existence of and the role of caffeine-sensitive ryanodine receptors (RyRs) in a rat pancreatic ${\beta}$-cell line, INS-1 cells. To measure cytosolic and stored $Ca^{2+}$, respectively, cultured INS-1 cells were loaded with fura-2/AM or furaptra/AM. $[Ca^{2+}]_i$ was repetitively increased by caffeine stimulation in normal $Ca^{2+}$ buffer. However, peak $[Ca^{2+}]_i$ was only observed after the first caffeine stimulation in $Ca^{2+}$ free buffer and this increase was markedly blocked by ruthenium red, a RyR blocker. KCl-induced elevations in $[Ca^{2+}]_i$ were reduced by pretreatment with ruthenium red, as well as by depletion of internal $Ca^{2+}$ stores using cyclopiazonic acid (CPA) or caffeine. Caffeine-induced $Ca^{2+}$ mobilization ceased after the internal stores were depleted by carbamylcholine (CCh) or CPA. In permeabilized INS-1 cells,$Ca^{2+}$ release from internal stores was activated by caffeine, $Ca^{2+}$, or ryanodine. Furthermore, ruthenium red completely blocked the CICR response in perrneabilized cells. RyRs were widely distributed throughout the intracellular compartment of INS-1 cells. These results suggest that caffeine-sensitive RyRs exist and modulate the CICR response from internal stores in INS-1 pancreatic ${\beta}$-cells.

토끼 심방근 및 혈관 평활근에서의 $Na^{+}/Ca^{2+}$ 교환기전에 관한 연구 ($Na^{+}/Ca^{2+}$ Exchange System in Atrial Trabeculae and Vascular Smooth Muscle of the Rabbit)

  • 김희주;문형로;엄융의;호원경
    • The Korean Journal of Physiology
    • /
    • 제22권1호
    • /
    • pp.13-29
    • /
    • 1988
  • In order to elucidate the regulatory mechanism of intracellular calcium ion concentrations, contractions or contractures induced by $Na^{+}-removal$, calcium-application or ouabain-treatment as an index of $Na^+/Ca^{2+}$ exchange activity were studied in atrial muscle or vascular smooth muscle (aorta and renal artery) of the rabbit. The magnitude of low sodium contractures in atrial trabeculae increased with sigmoid shape when external sodium concentrations were reduced to sodium-free condition, whereas that of calcium contracture intensified in a parabolic pattern when external calcium concentrations were elevated to 8 mM. $Na^{+}-removal$ contractures were induced in a duration-dependent manner to $K^{+}-free$ exposure and same findings were observed with ouabain treatment. $Na^{+}-free$ contractures were not affected by verapamil treatment, but stimulated by $100{\mu}M\;Mn^{2+}$ and inhibited by high concentrations of $Mn^{2+}\;(2{\sim}8mM)$ in a dose-dependent manner. Ryanodine which is known to suppress the release of calcium from internal store abolished spontaneous twitch contractions induced by $K^{+}-free$ solution, but had no effect on the development $Na^{+}-free$ contractures. Na-free contractures were not always induced in vascular smooth muscle preparations. Contractures by $O\;mM\;Na^+$ were usually seen in aorta, but not often in renal artery.$50\;mM\;K^+$, noradrenaline (NA) and angiotensin II (AII) always evoked very large contraction in all preparations of vascular smooth muscle. Contractures developed by $O\;mM\;Na^+$ were not sensitive to verapamil treatment as in atrial trabeculae, but were abolished by $100{\mu}M\;Mn^{2+}$. In contrast to $Na^{+}-free$ contractures, $Mn^{2+}(100{\mu}M)$ had no effect on the contractures induced by NA or 50 mM$K^+$. Caffeine in the concentration of 10 mM evoked transient contracture in the distal renal artery. The rate of spontaneous relaxation in caffeine contracture was dependent upon the concentrations of external sodium, and had double component of relaxation when the rate of relaxation was plotted in the semilogarithmic scale of relative tension versus time. Especially late components of relaxation had more direct relation to $Na^+$ concentrations. It could be concluded that $Na^+/Ca^{2+}$ exchange mechanism in the heart has a large capacity, inhibited by $Mn^{2+}$ but not by verapamil and ryanodine, while $Na^+/Ca^{2+}$ exchange system in vascular smooth muscle has a very low capacity especially in small artery, inhibited by low concentration of $Mn^{2+}\;(100{\mu}M)$ but not affected by verapamil and ryanodine.

  • PDF