• Title/Summary/Keyword: Rutile-anatase $TiO_2$

Search Result 243, Processing Time 0.025 seconds

Effects of anatase-rutile phase transition and grain growth with WO3 on thermal stability for TiO2 SCR catalyst (WO3 첨가에 의한 TiO2계 SCR 촉매의 상전이 및 입자성장이 고온안정성에 미치는 영향)

  • Yoon, Sang-Hyeon;Kim, Jang-Hoon;Shin, Byeong-Kil;Park, Sam-Sik;Shin, Dong-Woo;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.181-186
    • /
    • 2011
  • Thermal stability of the $TiO_2$ SCR catalyst with W03 loading was investigated in terms of structural and morphological analyses. The $TiO_2$ catalysts with 10 w% $WO_3$ content and without $WO_3$ were prepared. which were heat-treated at $800^{\circ}C$ for 5 h. It was found that the catalytic acidity was decreased by thermal degradation in the $WO_3-TiO_2$ specimen that relatively less than the $TiO_2$ specimen from FT-IR analysis. The phase transition of the $TiO_2$ catalyst from anatase to rutile was increased by heal-treatment, and the percentage of the rutile phase was 28.4 % in the $WO_3-TiO_2$ and 22.9 % in the $TiO_2$. A shell region of $WO_3$ distinguished from a $TiO_2$ particle was also observed in the grain boundary region, and the $WO_3$ led to the suppression of grain growth. It could be confirmed that the suppression of grain growth can contribute to the improvement of catalytic properties for thermal stability more than the increase of anatase-rutile phase transformation which cause the reduction of the catalytic activity in the $TiO_2$ SCR catalyst by the presence of $WO_3$.

Photocatalytic Reaction of VOCs Using Titanium Oxide (산화티타늄을 이용한 VOCs의 광촉매 반응)

  • Jung, Soo-Kyung
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.171-176
    • /
    • 2008
  • The VOCs have a direct influence on indoor air pollution, and stimulate respiratory organs and eyes in human body. Also, most of VOCs are a carcinogenic substances and causes to SBS (sickness building syndrome). Therefore, this study was progressed in photocatalysis of VOCs using UV/$TiO_2$ which was a benign process environmentally. The experiments were performed to know photodegradation characteristics as crystalline structure of $TiO_2$ which had anatase, rutile and P-25 (anatase : rutile = 70 : 30). The main purpose of this study was to identify photocatalytic characteristics as inlet concentration of reactants, $H_2O$, and residence time.

HRTEM Study of Phase Transformation from Anatase to Rutile in Nanocrystalline $TiO_2$ Particles

  • Kim, Kyou-Hyun;Park, Hoon;Ahn, Jae-Pyoung;Lee, Jae-Chul;Park, Jong-Ku
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.466-467
    • /
    • 2006
  • The anatase particle was facetted at the free surface and a neck formation between the anatase particles prior to the phase transformation occured. This resulted in the severe lattice distortion at the region of the interface near the neck and this can act as the nucleation sites for the phase transformation. The grain growth of rutile particles after the phase transformation grew very fast by the sweeping phenomena of grain boundary. Therfore, It leaded to the microstructure without the rutile phase located in anatase particle.

  • PDF

Photocatalytic Degradation of Trichloroethylene over Titanium Dioxides (이산화티탄에 의한 삼염화에틸렌의 광촉매 분해반응)

  • Lee, Yong-Doo;Ahn, Byung-Hyun;Lim, Kwon-Taek;Jung, Yeon-Tae;Lee, Gun-Dae;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1035-1040
    • /
    • 1999
  • Photocatalytic degradation of trichloroethylene has been carried out with UV-illuminated $TiO_2$-coated pyrex reactor in gas phase. Three commercial $TiO_2$ oxides were used as catalysts. The effect of reaction conditions, initial concentration of trichloroethylene, concentration of oxidant and light intensity on the photocatalytic activity were examined. Anatase-type catalyst showed higher activity than rutile-type, but P-25 catalyst showed the highest activity. The degradation rate increased with the decrease of flow rate and initial trichloroethylene concentration. It was preferable to use air as an oxidant. In addition, reactants with the water vapor decreased the activity and the degradation rate increased with the increase of light intensity, but it was very low with solar light. Photocatalytic deactivation was not observed at low concentration of trichloroethylene.

  • PDF

Structural and Morphological Behavior of TiO2 Rutile Obtained by Hydrolysis Reaction of Na2Ti3O7

  • Lee, Seoung-Soo;Byeon, Song-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1051-1054
    • /
    • 2004
  • The structural transformation behavior of $Na_2Ti_3O_7$ by hydrolysis was investigated in mild and strong acidic aqueous medium. Compared with $K_2Ti_4O_9,\;Na_2Ti_3O_7$ exhibits quite different structural and morphological transformation behavior despite their similar layered structural characteristics. $TiO_2(B)$ obtained by heat treatment of $H_2Ti_3O_7\;at\;350^{\circ}C$ transforms to rutile $H_2Ti_3O_7\;at\;900^{\circ}C$. This temperature is much lower than $1200{\circ}C$, the temperature for anatase to rutile transition when $K_2Ti_4O_9$ is used as a starting titanate. A rectangular rod shape and size of $TiO_2(B)$ particles obtained from $Na_2Ti_3O_7$ is also different from a fibrous structure of $TiO_2(B)$ prepared using $K_2Ti_4O_9$. Rutile crystals of 100 nm diameter with a corn-like morphology and large surface area are directly obtained when the hydrolysis of $Na_2Ti_3O_7$ is carried out at $100^{\circ}C$ in a strong acid solution. The structure of starting titanates and the hydrolysis conditions are an important factor to decide the particle size and morphology of $TiO_2(B)\;and\;TiO_2$.

Synthesis and Photo Catalytic Activity of 10 wt%, 20 wt%Li-TiO2 Composite Powders (10 wt%, 20 wt%Li-TiO2 복합분말의 합성과 광촉매 활성평가)

  • Kim, Hyeong-Chul;Han, Jae-Kil
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.33-37
    • /
    • 2016
  • 10 wt.% and 20 wt.%$Li-TiO_2$ composite powders are synthesized by a sol-gel method using titanium isopropoxide and $Li_2CO_3$ as precursors. The as-received amorphous 10 wt.%$Li-TiO_2$ composite powders crystallize into the anatase-type crystal structure upon calcination at $450^{\circ}C$, which then changes to the rutile phase at $750^{\circ}C$. The asreceived 20 wt%$Li-TiO_2$ composite powders, on the other hand, crystallize into the anatase-type structure. As the calcination temperature increases, the anatase $TiO_2$ phase gets transformed to the $LiTiO_2$ phase. The peaks for the samples obtained after calcination at $900^{\circ}C$ mainly exhibit the $LiTiO_2$ and $Li_2TiO_3$ phases. For a comparison of the photocatalytic activity, 10 wt.% and 20 wt.% $Li-TiO_2$ composite powders calcined at $450^{\circ}C$, $600^{\circ}C$, and $750^{\circ}C$ are used. The 20 wt.%$Li-TiO_2$ composite powders calcined at $600^{\circ}C$ show excellent efficiency for the removal of methylorange.

Phase Transitions In Nonstoichiometric Titanium Oxide Thin Films (비정량적 산화티타늄 박막의 상변태 특성)

  • Hong, Seong-Min;Lee, Pil-Hong;Go, Gyeong-Hyeon;An, Jae-Hwan;Lee, Sun-Il
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.224-228
    • /
    • 1998
  • Phase transition kinetics of nonstoichiometric amorphous titanium oxide thin films deposited by reactive sputtering was investigated after cooling down with various rate followed by l0min.-3hrs. annealing at $500^{\circ}C$~$600^{\circ}C$ After short duration and fast cooling. Magneli was the only crystalline phase because the oxidation rates of $TiO_{2-x}$, could be relatively slower than that of crystallization. When the films were cooled slowly between $500^{\circ}C$~$300{\circ}C$, Magneli was transformed into an anatase and stabilized, but directly into a rutile under fast cooling. Because the rutile also prevailed after cooling from $600^{\circ}C$, it was concluded that the rutile phase could be formed directly from Magneli as well as converted from the anatase. Changes in volume and surface morphology were observed related to crystallization and oxidation processduring heat treatment.

  • PDF

이산화티타늄($TiO_2$)의 Anatase상에 따른 가스감응 특성의 영향

  • O, Sang-Jin;Heo, Jeung-Su;Lee, Han-Yong;Jo, Bong-Han
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.30.2-30.2
    • /
    • 2009
  • TiO2는 3가지의 결정구조를 가지고 있으며 결정 입자, 구조, 상의 형태에 따라서 성질 및 기능에 영향을 주고 있다. anatase상의 애너지 밴드갭과 전자와의 재결합 확률이 크기 때문에 Rutile상 보다 우수한 성질을 갖고 있어 산화물 반도체로 이용하는 것이 적합하다. 본 실험에서는 나노로드의 TiO2를 수열처리법에 의해 합성한 후 박막을 제조하여 감응특성을 조사하였다. X선 회절분석기(X-Ray Diffraction)로 분석결과 ph=1의 루타일상을 제외하고, pH=2~7의 더 넓은 구간에서 뚜렷한 회절피크의 anatase 상이 나타났으며 다른 비정질상이 발생되지 않는 결정성이 좋은 단결정임이 나타났다. NaOH solution 을 이용하여 수열처리후 $180^{\circ}C$이상의 특정 온도 구간에서 수십 나노 로드 형태로의 2차 성장된 모습을 TEM과 EDS로 결정구조와 화학조성을 분석하였다. 그리고 BET 측정을 통해 $180^{\circ}C$의 소성온도에서 TiO2 입자의 비표면적이 가장 우수한 것으로 나타났다. 나노로드의 수용액을 Al2O3기판의 감지막 위에 떨어뜨려 네트워크된 막을 형성한후에 센서를 제작하였다. 히터 전압이 $400^{\circ}C$에서 나노 파우더센서에서는 반응이 일어나지 않은 반면, 나노 로드센서는 CH3SH에서 28% 의 높은 감도를 얻었고, Toluene의 반응에서는 15%의 감도가 나타났다. 그 외 NO, CO, H2등의 측정에서 아무런 반응이 일어나지 않았다. 이는 비교적 기공이 큰분자(Size)를 가진 CH3SH=76nm, Toluene=60nm에서 반응이 일어난 반면, H2=28nm, CO=22nm에서 감도가 나타나지 않은 것을 보아 흡착분자크기에 의한 영향이 큰 것으로 나타났다.

  • PDF