• Title/Summary/Keyword: Rust

Search Result 437, Processing Time 0.022 seconds

Corrosion behaviors of 18Cr Stainless Steels in Selective Catalytic Reduction Environments (Selective Catalytic Reduction (SCR) 환경에서 18% 크롬 스테인리스강의 부식 거동)

  • Heesan Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.175-186
    • /
    • 2023
  • Effects of high-temperature environment and low-temperature environment on corrosion behaviours of 18Cr stainless steels (type 304L, type 441) in simulated selective catalytic reduction (SCR) environments were studied using weight loss test in each environment and rust analysis. With time to exposure to the high-temperature environment, type 441 was more resistant to corrosion than type 304L due to both higher diffusivity of Cr and lower thermal expansion coefficient in α-iron. The former provides a stable protective Cr2O3 layer. The latter leaded to low residual stress between scale and steel, reducing the spallation of the scale. With time to exposure to the low-temperature environment, on the other hand, type 304L was more resistant to corrosion than type 441. The lower resistance of type 441 was caused by Cr-depleted zone with less than 11% formed during the pre-exposure to a high-temperature environment, unlike type 304L. It was confirmed by results from the crevice corrosion test of sensitised 11Cr steel. Hence, to achieve higher corrosion resistance in simulated SCR environments, ferritic stainless steels having lower thermal expansion coefficient and higher diffusivity of Cr but containing more than 18% Cr are recommended.

Anti-corrosion impact of green synthesis of Silica nanoparticles for the sports structures in physical exercise activities

  • Zhixin Zhang;Zhiqiang Cai;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.41-46
    • /
    • 2023
  • Sport has no age limit and can be done anywhere and in any condition with minimal equipment. The existence of sports spaces in all parts of the world is considered a citizen's right. One of the activities carried out in this field is installing sports equipment and structures in parks and encouraging citizens to use this equipment for physical health with the least cost and facilities. Installing sports structures in open spaces such as parks is a practical step for developing citizens' sports. Although using devices in parks is acceptable, it is more critical to meet scientific and technical standards. The components of these structures must have high strength and endurance against changes in environmental conditions such as humidity, temperature difference, and corrosion. Among the various causes of material degradation, corrosion has always been one of several fundamental causes of metal equipment failure. Sports structures in open spaces are not safe from corrosion. Uniform corrosion is the most common type of corrosion. This corrosion usually occurs uniformly through a chemical or electrochemical reaction across the surface exposed to the corrosive environment. Rust and corrosion of outdoor sports structures are examples of this corrosion. For this reason, in this research, with the green synthesis of silica nanoparticles and its application in outdoor sports structures, the life span of these structures can be increased for the use of physical exercises as well as their quality.

A case of splenic extraskeletal mesenchymal chondrosarcoma in a Yorkshire Terrier dog

  • Eunhye Jung;Hyoung-Seok Yang;Ji-Youl Jung;Jae-Hoon Kim
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.4
    • /
    • pp.357-362
    • /
    • 2023
  • A 7-year-old male Yorkshire Terrier dog was present to an animal clinic and a large soft mass was found in the spleen by radiological examination, and total splenorectomy was performed. Grossly, a large protruded splenic mass was soft to moderately firm and multilobulated. On the cut surface, the mass was off-white to tan, dark red, and rust colored with many cavitation and had gelatinous areas. Histologically, the tumor cells were characterized by coexistence of the primitive mesenchymal tissues and mature or immature cartilage tissues. Primitive mesenchymal areas were composed of round/oval or spindle shaped immature cells with high mitosis. The tumor cells of the cartilage areas were located in basophilic cartilaginous matrix. Intercellular matrix in the cartilaginous areas was stained blue with Masson's trichrome and deep blue with alcian blue, respectively. Immunohistochemically, the cartilaginous tumor cells demonstrated positive reactions for vimentin and S-100, and surrounding mesenchymal tumor cells are immunopositive for vimentin. This case was diagnosed as splenic extraskeletal mesenchymal chondrosarcoma of a Yorkshire Terrier dog, a toy breed.

Contact dermatitis among male workers exposed to metalworking fluids (금속가공유를 취급하는 남성 근로자의 접촉피부염)

  • Jin, Young-Woo;Lee, Jun-Young;Kim, Eun-A;Park, Seung-Hyun;Chai, Chang-Ho;Choi, Yong-Hyu;Kim, Kyoo-Sang
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.2 s.57
    • /
    • pp.381-391
    • /
    • 1997
  • In an epidemiological study of metal workers exposed to metalworking fluids (MWF), the prevalence time of Evolution, seasonal occurrence and clinical type of contact dermatitis were investigated. Compostional analysis of MWF with HPLC, dermatological examination and two consecutive questionnaire surveys were conducted. Study population was divided into two groups ; workers contact to cutting oil and workers contact to rust preventive oil. In the analysis of MWF, aliphatic hydrocarbons, having 12-20 carbons, was most common composition(49.04%) of cutting oil otherwise, major contents (90.99%) of the rust preventives oil were aliphatic hydrocarbons composed of 6-9 carbons. The frequency (point prevalence) of contact dermatitis(CD) was 7(12.7 per 100 subjects) in the dermatological examination of 55 workers. As the result of second survey for contact dermatitis, cumulative prevalence of oil working full-time and recent 1 year prevalence in two groups were 28.0, 16.7 and 15.1, 12.5 per 100 subjects. There were no difference in the prevalence of CD by oil, age, oil contact duration. Summer is the most common evolution season in workers exposed to cutting oil, but not in workers exposed to rust preventive oil. Major clinical type of CD was erythematous papules in both groups. It presents the importance of preventive measures that 51.1% suffer from contact dermatitis had medical care at their own expense, and 47.1% of them felt serious about their contact dermatitis. From the fact that 68.6% think cotton gloves protective apparatus, we emphasize the need for health education.

  • PDF

Synthesis and Evaluation of Ecofriendly Nontoxic Cleaning Agents (무독성 친환경 세정제의 합성 및 평가에 관한 연구)

  • Kim, Jong Cheon;Ryu, Young;Hong, Yeon Heui;Kim, Seok Chan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.548-551
    • /
    • 2014
  • In order to reduce toxicity on the human body, four new cleaning agents (1-4) containing ester and ether functionalities have been invented. The synthesized cleaning agents's physical properties, biodegradabilities, and $LD_{50}$ values, which were conducted by Korea Testing Certification Institute by using standard method, showed excellent values. A specimen for cleaning ability was prepared by cutting in $60{\times}40mm$ size of stainless steel plate. The surface of the above specimens was treated with four different kinds of contaminants, such as cutting oil, anti-rust oil, drawing oil, and lubricating oil. Contaminated specimens were then immersed in compounds (1-4) for 1 to 5 minutes to dissolve oil in the cleaning agent. The data indicate that all compounds (1-4) exhibit good cleaning ability toward four contaminant oils. It is also confirmed that these compounds can be applicable to various industrial cleaning fields as nontoxic and biodegradable cleaning agents because of their excellent biodegradabilities and $LD_{50}$ values.

Enlargement of Anti-corrosion of Zinc Plating by the Trivalent Chromium Sulfate Conversion Coating (3가 크롬황산염의 크로메이트에 의한 아연도금내식성 증대)

  • Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.296-302
    • /
    • 2007
  • A trivalent chromate conversion coating solution which is composed with $KCr_2(SO_4)$ as main component was investigated to test a feasibility of use as an alternative six-valent chromate conversion coating for improvement of anti-corrosion of zinc plating. The proposed trivalent convesion coating was consisted of $KCr(SO_4)$ 35~45 g/L as trivalent chromium source, $NaH_2PO_4$ 20~30 g/L as phosphate, $CoSO_4$, 10~20 g/L, $ZnSO_4$ 10~20 g/L as metallic sulfates. This trivalent chromate films which are coated by this chromate conversion coating solution under pH 2.0~2.2, immersion time of 20~25 s at room temperature are able to achieve over 120 h in neutral salt spray test to 5% white rust.

An Experimental Study on the Flexural Behavior of Deck Plates with Metal Lath and Mortar (라스와 모르타르를 이용한 데크의 휨거동에 관한 실험적 연구)

  • Kim, Sung-Bae;Kim, Sung-Jin;Seo, Dong-Min;Kim, Sang-Seup
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.117-125
    • /
    • 2008
  • In the domestic construction industry field nowadays, the usage of deck plates is currently increasing due to the lack of construction workers and the rised in construction cost. However, using deck plates manufactured by thin zinc galvanization in underground structures is criticised because it can lead to increase in maintenance cost caused by rust generation and water leakage. As a solution for this particular problem, deck plates created by Lath and Mortar instead of zinc galvanized steel sheets were developed. This paper deals with the experimental study on flexural behavior of deck plate using metal lath and mortar. Seventeen fullscale specimens were constructed and tested with different type of truss, the diameter of the top and bottom bar, and the thickness of slab. Tests results show that LAMO deck displayed equal performance such as zinc galvanized steel sheets.

Analytical model of corrosion-induced cracking of concrete considering the stiffness of reinforcement

  • Bhargava, Kapilesh;Ghosh, A.K.;Mori, Yasuhiro;Ramanujam, S.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.749-769
    • /
    • 2003
  • The structural deterioration of concrete structures due to reinforcement corrosion is a major worldwide problem. Service life of the age-degraded concrete structures is governed by the protective action provided by the cover concrete against the susceptibility of the reinforcement to the corrosive environment. The corrosion of steel would result in the various corrosion products, which depending on the level of the oxidation may have much greater volume than the original iron that gets consumed by the process of corrosion. This volume expansion would be responsible for exerting the expansive radial pressure at the steel-concrete interface resulting in the development of hoop tensile stresses in the surrounding cover concrete. Once the maximum hoop tensile stress exceeds the tensile strength of the concrete, cracking of cover concrete would take place. The cracking begins at the steel-concrete interface and propagates outwards and eventually resulting in the through cracking of the cover concrete. The cover cracking would indicate the loss of the service life for the corrosion-affected structures. In the present paper, analytical models have been developed considering the residual strength of the cracked concrete and the stiffness provided by the combination of the reinforcement and expansive corrosion products. The problem is modeled as a boundary value problem and the governing equations are expressed in terms of the radial displacement. The analytical solutions are presented considering a simple 2-zone model for the cover concrete viz. cracked or uncracked. A sensitivity analysis has also been carried out to show the influence of the various parameters of the proposed models. The time to cover cracking is found to be function of initial material properties of the cover concrete and reinforcement plus corrosion products combine, type of rust products, rate of corrosion and the residual strength of the cover concrete. The calculated cracking times are correlated against the published experimental and analytical reference data.

Atmospheric Corrosion Process for Weathering Steel

  • Nagano, Hiroo;Yamashita, Masato
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.119-124
    • /
    • 2008
  • Steel is generally not corrosion resistant to water with formation of non protective rusts on its surface. Rusts are composed of iron oxides such as $Fe_3O_4$, $\alpha-$, $\beta-$, $\gamma-$and ${\delta}-FeOOH$. However, steel, particularly weathering steel containing small amounts of Cu, Ni and Cr etc., shows good corrosion resistance against rural, industrial or marine environment. Its corrosion rate is exceedingly small as compared with that of carbon steel. According to the exposure test results undertaken in outdoor environments, the atmospheric corrosion rate for weathering steel is only 1 mm for a century. Atmospheric corrosion for steels proceeds under alternate dry and wet conditions. Dry condition is encountered on steel surface on fine or cloudy days, and wet condition is on rainy or snowy days. The reason why weathering steel shows superior atmospheric corrosion resistance is due to formation of corrosion protective rusts on its surface under very thin water layer. The protective rusts are usually composed of two layer rusts; the upper layer is ${\gamma}-FeOOH$ termed as lepidocrocite, and inner layer is nano-particle ${\alpha}-FeOOH$ termed as goethite. This paper is aimed at elucidating the atmospheric corrosion mechanism for steel in comparison with corrosion in bulky water environment by use of empirical data.The summary is as follows: 1. No corrosion protective rusts are formed on steel in bulky water. 2. Atmospheric corrosion for steel is the corrosion under wetting and drying conditions. Corrosion and passivation occur alternately on steel surface. Steel, particularly weathering steel with small amounts of alloying elements such as Cu, Ni and Cr etc. enhances forming corrosion protective rusts by passivation.

Field Applications of Carbon Dioxide Pellet for Underground Pipe Cleaning (지중 매설관의 세정을 위한 카본 다이옥사이드 펠릿의 현장 적용성 검토)

  • Choi, Jae-Soon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.75-82
    • /
    • 2017
  • In this study, a new cleaning method using carbon dioxide pellet in the part of underground pipe cleaning method was proposed and verified. First of all, the commentary of The Society for Protective Coatings was examined in detail to determine the quantitative cleaning effects. Also, field tests were carried out to confirm the application of the new method. In the test, the surface condition of inner pipe after the application of the new method was investigated and two types of nozzles were compared in the tests. Also, the tests to measure the final impact pressure of air and carbon dioxide pellet mixtures were performed to investigate the losses of air pressure were investigated. Through this verification on the new method, it was found that the new method is very efficient for the removal of the rust in the pipe cleaning works. Also, the nozzle with excellent cleaning effect was also selected. As a result, this method will be able to largely contribute to the recycling of $CO_2$ which is limited to the use as a cooling agent or the storage of waste.