• Title/Summary/Keyword: Russian Fires

Search Result 4, Processing Time 0.021 seconds

Russian Forest Fire Smoke Aerosol Monitoring Using Satellite and AERONET Data (인공위성 자료와 AERONET 관측자료를 이용한 러시아산불 시 발생한 에어로졸의 중장거리 모니터링)

  • 이권호;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.437-450
    • /
    • 2004
  • Extensive forest fire activities occurred across the border in Russia, particularly east of Lake Baikal between the Amur and Lena rivers in May 2003. These forest fires released large amounts of particulates and gases into the atmosphere, resulting in adverse effects on regional air quality and the global radiation budget. Smoke pollution from the Russian fires near Lake Baikal was transported to Korea through Mongolia and eastern China. On 20 May 2003, a number of large fires were burning in eastern Russian, producing a thick, widespread pall of smoke over much of Northeast Asia. In this study, separation technique was used for aerosol retrieval application with imagery from MODIS aboard TERRA satellites. MODIS true-color image shows the location of fires and the grayish color of the smoke plumes over Northeast Asia. Aerosol optical thckness (AOT) retrieved from the MODIS data were compared with fire hot spots, ground-based radiation data and TOMS -based aerosol index data. Large AOT, 2.0-5.0 was observed on 20 May 2003 over Korea due to the influence of the long range transport of smoke aerosol plume from the Russian fires, while surface observed fine mode of aerosol size distribution increased.

Impact of the Smoke Aerosol from Russian Forest Fires on the Atmospheric Environment over Korea during May 2003 (2003년 5월 러시아지역에서 발생한 산불로 인한 스모크 에어로졸 플룸의 영향)

  • Lee, Kwon-Ho;Kim, Jeong-Eun;Kim, Young-Joon;Kim, Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.603-613
    • /
    • 2004
  • Extensive forest fires occurred across the border in Russia. particularly east of Lake Baikal between the Amur and Lena rivers in May 2003. These forest fires released large amounts of particulates and gases into the atmosphere. resulting in adverse effects on regional air quality and the global radiation budget. Smoke pollution from the Russian fires near Lake Baikal was sometimes transported to Korea through Mongolia and eastern China. In this study ground based radiation (visible and UV-B) data measured during May 2003 at Seoul and Kwangju were analyzed to estimate smoke aerosol impacts on solar radiation. Surface criteria air pollutants ($PM_{10}$, CO, $O_3$) data were also obtained from National Institute of Environmental Research (NIER) during smoke aerosol event period (19 May~24 May 2003). Large Aerosol Optical Depth (AOD) 1.0~3.0 was observed during this period due to the influence of the long range transport of smoke aerosol plume from the Russian fires, resulting in short-wavelength direct aerosol radiative forcing of -90~ -200W/$m^2$. These smoke aerosol plume caused decrease in surface UV-B radiation up to 80% and increase in PM_(10) concentration up to 200${\mu}g/m^3$ exceeding the 24 hour ambient air quality standard.

Satellite Monitoring of Smoke Aerosol Plume during the Russian Fire Episode of May 2003 over Northeast Asia

  • Lee, Kwon H.;Kim, Young J.;Hoyningen-Huene, Wolfgang V.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.491-492
    • /
    • 2003
  • The large amount of smoke produced near Lake Baikal was transported to Northeast Asia with high AOT (Aerosol Optical Thickness) as seen in satellite images. Aerosol retrieval using a separation technique was applied to MODIS (Moderate Imaging Spectroradiometer) and SeaWiFS (Sea-viewing Wide Field-of-view Sensor) data observed during 14-22 May 2003. Large AOT, 2.0~5.0 was observed on 20 May 2003 over Korea due to the influence of the long range transport of smoke aerosol plume from the Russian fires, resulting in high PM10 concentration was observed at the surface.

  • PDF

Analysis of Tropospheric Carbon Monoxide over East Asia

  • Lee, S.H.;Choi, G.H.;Lim, H.S.;Lee, J.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.615-617
    • /
    • 2003
  • Carbon monoxide (CO) is one of the important trace gases because its concentration in the troposphere directly influences the concentrations of tropospheric hydroxyl (OH), which controls the lifetimes of tropospheric trace gases. CO traces the transport of global and regional pollutants from industrial activities and large scale biomass burning. The distributions of CO were analyzed using the MOPITT data for East Asia, which were compared with the ozone distributions. In general, seasonal CO variations are characterized by a peak in the spring, which decrease in the summer. The monthly average for CO shows a similar profile to that for O$_3$. This fact clearly indicates that the high concentration of CO in the spring is possibly due to one of two causes: the photochemical production of CO in the troposphere, or the transport of the CO into East Asia. The seasonal cycles for CO and O$_3$ in East Asia are extensively influenced by the seasonal exchanges of different air mass types due to the Asian monsoon. The continental air masses contain high concentrations of O$_3$ and CO, due to the higher continental background concentrations, and sometimes to the contribution from regional pollution. In summer this transport pattern is reversed, where the Pacific marine air masses that prevail over Korea bring low concentrations of CO and O$_3$, which tend to give the apparent summer minimums.

  • PDF