• Title/Summary/Keyword: Rushton Type Impeller

Search Result 11, Processing Time 0.023 seconds

The Optimum Design of Flow Characteristics in Fermentation (발효조 내의 유동특성 최적화 설계)

  • 박상규;김기성;양희천
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.117-121
    • /
    • 2001
  • A numerical simulation was conducted to investigate the effect of height position of Rushton type Impeller in the fermentation. The computational method was based on the CFX code. The simulation was performed for 3 height differences(25, 30, 35mm) between Rushton type impeller and bottom of fermentation. The instantaneous flow fields showed that the bulk flow consisted of large scale vortices. However the main flow results showed that the formation of ring vortices above and below the impeller depended on the height of the impeller.

  • PDF

Optimization of Bioreactor Operation by Mass Transfer Coefficient (물질전달계수를 이용한 생물 반응기 운전 최적화)

  • Kim, Hyung-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.243-251
    • /
    • 2001
  • The effects of various operating parameters(agitation speed, impeller type, antiform agents, impeller spacing etc.) on air-liquid mass transfer was characterized by volumetric mass transfer coefficient($k_La$). Also, the dual-impeller agitated systems are compared with single-impeller agitated systems with a special focus on its applications for bioreactors, $k_La$ was take over a range of 200~450 rpm of agitation speed, and 0.5~2.5 vvm of air flow rates, for four single impeller and impeller combinations consisting of four impeller types, namely rushton, pitched blade, scaba, intermig were tested. The rushton impeller showed the best $k_La$ as compared with other single impellers. The dual impeller system are found to be superior as compared to single impeller in all aspects, The best combination of the dual impeller was a intermig of axial flow type as an upper impeller and a rushton of radial flow type as a lower part. Also, the control of the DO level with the variation of agitation speed was more efficient than that with an increase in air flow rate. The addition of antiform dropped the $k_La$ very large up to 1g/L regardless the type. PPG was less effect on $k_La$ than other antiforms. The impeller spacing and presence of solute are found very effective on $k_La$. When the $NaNO_3$is presented as solute, the $k_La$ increased approximately 50% then control.

  • PDF

Study on the Industrial Agitator's Impeller Shape Analysis Using CFD and Reverse Engineering (CFD와 역설계를 이용한 교반기 Impeller 형상 해석에 관한 연구)

  • Kim, D.K.;Bae, S.T.;Park, J.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.5
    • /
    • pp.359-364
    • /
    • 2006
  • Industrial Agitators are used in various industrial fields where they are necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematically investigated. The present study aims for clarify unsteady flow characteristics induced by various impellers in agitator's tank. Impellers are Pitched blade turbine(PBT) types, Screw type and Rushton turbine type(RUT). In this study is numerical analysis of the Industrial agitator's Impeller types. The rotating speed of impellers fixed about 100RPM. Numerical analysis results show that differential flow characteristics of each type Impeller and Rushton turbine type(RUT) is suitable for mixing powder.

Numerical Study on Flow Patterns of Impeller's Type in a Stirred Tank (혼합탱크 내의 임펠라 형태에 따른 유동 특성에 관한 수칙해석)

  • Oh, Sueg-Young;Song, Gil-Sub
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.454-459
    • /
    • 2001
  • The present study is concerned with the flow patterns induced by other impellers in a rectangular tank Impellers are FBT(Flat blade turbine), PBT(Pitched blade turbine), Shroud turbine, Rushton Turbine, and Helical ribbon turbine. The solution of flows in moving reference frames requires the use of 'moving' cell zone. The moving zone approaches are MRF(Multiple reference frame), which is a steady-state approximation and Sliding method, which is a unsteady-state approximation. Numerical results using two moving zone approaches are compared with experiments by Ranade & Joshi, which have done extensive LDA measurements of the flow generated by a standard six-bladed Rushton turbine in a cylindrical baffled vessel. In this paper we simulated the flow patterns with above mentioned moving zone approaches and impellers. Turbulence model is RNG k-$\epsilon$ model.

  • PDF

THE EFFECTS OF IMPELLER CONFIGURATION ON MIXING AND HEAT TRANSFER IN A STIRRED TANK WITH A HELICAL COOLING COIL (나선형 냉각 코일이 설치된 교반기에서 임펠러 배치가 교반과 열전달에 미치는 영향)

  • Kim I.S.;Song H.-S.;Han S.P.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.55-59
    • /
    • 2005
  • CFD analysis has been conducted to find the two stage impeller configuration which is the most suitable for a stirred tank with an internal helical cooling coil and a cooling jacket, which is frequently used in chemical industries for highly exothermic reactions ranged from low to medium viscosity. Two typical types of impellers are considered; pitched paddle impellers and Rushton turbine impellers. Interestingly, pitched paddle impellers show a good mixing performance for multi-species, whereas Rushton turbine impellers achieve a good mixing performance for multi-phases. Besides the type of an impeller, the location of an impeller is another important factor to be considered in order to accomplish an effective mixing. The best set of types and locations of two impellers is recommended based on the coefficient of variation(CoV) value and the heat removal capability obtained from CFD results. The former is a measure to quantify the degree of mixing.

  • PDF

A Study about Choice of Industrial Mixer's Impeller Type for PIV and CFD (PIV와 CFD에 의한 산업용 교반기 Impeller 형상 선정에 관한 연구)

  • Kim, Dong-Kyun;Kim, Jeong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.797-803
    • /
    • 2007
  • The Industrial Mixers are used in various industrial fields where they are necessary to intimately mix two reactants in a short Period of time. However. despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematically investigated. The present study aims for clarify unsteady flow characteristics Induced by various impellers in a tank. Impellers are pitched blade turbine(PBT) types, Screw type and Rushton turbine type. In this study choice of the industrial mixer's impeller type using PIV and CFD method. The rotating speed of impellers are fixed by 100RPM.

A Study about Choice of Industrial Mixer's Impeller Type for Concentration Measurement Method and PIV (농도계측기법과 PIV에 의한 산업용 교반기 Impeller 형상 선정에 관한 연구)

  • Kim, Dong-Kyun;Bae, Suk-Tae;Kim, Jeong-Hwan;Kim, Oh-Keun;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.413-419
    • /
    • 2006
  • The Industrial Mixers are used in various industrial fields where they are necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematically investigated. The present study aims for clarify unsteady flow characteristics induced by various impellers in a tank. Impellers are pitched blade turbine(PBT) types. Screw type and Rushton turbine type. In this study choice of the Industrial Mixer's Impeller type for distribution of concentration and PIV measurement method. The rotating speed of impellers are fixed by 100RPM.

Flow Characteristics about Industrial Agitators Impeller Shape by CFD (전산유체역학을 이용한 산업용교반기의 Impeller형상에 따른 유동특성)

  • Kim, D.K.;Bae, S.T.;Lee, C.J.;Park, J.H.;Kim, O.K.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.321-322
    • /
    • 2006
  • Industrial agitators are used in various industrial fields where they are necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial agitators are not systematically investigated. The present study alms for clarify unsteady flow characteristics induced by various impellers in a tank. Impellers are pitched blade turbine(PBT) types, Screw type and Rushton turbine type. In this study flow characteristics of the impeller using CFD. The rotating speed of impellers fixed about 100RPM. These three types of Impeller show that typical flow characteristics of axial turbine and suitable for mixing powder

  • PDF

A Study on the Mixing Characteristics in a Rushton Turbine Reactor by a Laser Induced Fluorescence Method (레이저 형광여기법(LIF)를 이용한 러쉬톤 터빈 교반기의 혼합특성에 관한 연구)

  • Jeong, Eun-Ho;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1145-1152
    • /
    • 2002
  • A non-intrusive Planar Laser-Induced Fluorescence(PLIF) technique was applied to study the turbulent mixing process in a Rushton turbine reactor. Instantaneous and ensemble averaged concentration fields was obtained by measuring the fluorescence intensity of Rhodamine B tracer excited by a thin Nd:Yag laser sheet illuminating the whole center plane of the stirred tank. The gray level images captured by a 14-bit cooled CCD camera could be transformed to the local concentration values using a calibration matrix. The dye injection point was selected at the tank wall with three quarter. height (3/4H) from the tank bottom to observe the mixing characteristics in upper bulk flow region. There exist distinct two time scales: the rapid decay of mean concentration after the dye infusion reflects the large scale turbulent mixing while the fellowed slow decay reveals the small scale molecular mixing. The temporal change of concentration variance field conjectures the two sequential processes for the batch type mixing. An inactive column of water is existed above the impeller disk, in which the fluid rotates with the shaft but is isolated from the mean bulk flow.

A Study on the Mixing Characteristics in Complex Turbulent Flow by a Laser Induced Fluorescence Method (레이저 형광여기법(LIF)를 이용한 복잡 난류유동장의 혼합특성에 관한 연구)

  • Kim, Kyung-Chun;Jeong, Eun-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.542-547
    • /
    • 2001
  • A non-intrusive Planar Laser-Induced Fluorescence(PLIF) technique was applied to study the turbulent mixing process in a Rushton turbine reactor. Instantaneous and ensemble averaged concentration fields are obtained by measuring the fluorescence intensity of Rhodamine B tracer excited by a thin Nd:Yag laser sheet illuminating the whole center plane of the stirred tank. The gray level images captured by a 14-bit cooled CCD camera can be transformed to the local concentration values using a calibration matrix. The dye injection point was selected at the tank wall with three quarter height (3/4H) from the tank bottom to observe the mixing characteristics in upper bulk flow region. There exist distinct two time scales: the rapid decay of mean concentration in each region after the dye infusion reflects the large scale mixing while the followed slow decay reveals the small scale mixing. The temporal change of concentration probability functions conjectures the two sequential processes in the batch type mixing. An inactive column of water existed above the impeller disk, in which the fluid rotates with the shaft but is isolated from the mean bulk flow.

  • PDF