• Title/Summary/Keyword: Rural groundwater monitoring network

Search Result 8, Processing Time 0.018 seconds

Rural Groundwater Monitoring Network in Korea (농어촌지하수 관측망)

  • Lee, Byung Sun;Kim, Young In;Choi, Kwang-Jun;Song, Sung-Ho;Kim, Jin Ho;Woo, Dong Kwang;Seol, Min Ku;Park, Ki Yeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.1-11
    • /
    • 2014
  • Rural groundwater monitoring network has been managed by Korea Rural Community Corporation (KRC) since 1998. The network consists of two kinds of subnetworks; rural groundwater management network (RGMN) and seawater intrusion monitoring network (SIMN). RGMN has been operated to promote a sound and sustainable development of rural groundwater within the concerned area for groundwater quality and quantity. SIMN has been operated to protect the crops against hazards by the saline water in coastal areas in which the shortage of irrigation water become a main problem for agriculture. Currently, a total of 283 monitoring wells has been installed; 147 wells in 79 municipalities for RGMN and 136 wells in 52 ones for SIMN, respectively. Two subnetworks commonly monitor three hydrophysical properties (groundwater level, temperature, and electric conductivity) every hour. Monitored data are automatically transferred to the management center located in KRC. Data are opened to the public throughout website named to be the Rural Groundwater Net (www.groundwater.or.kr). Annual reports involving well logging and hydrochemical data of RGMN and SIMN have been published and distributed to the rural water management office of each municipalities. In addition, anyone who concerns about RGMN an SIMN can freely download these reports throughout the Rural Groundwater Net as well.

An Interpretation of Changes in Groundwater Level and Electrical Conductivity in Monitoring Wells in Jeiu Island (제주도의 지하수 관측망 자료를 이용한 지하수위 및 전기전도도 변화 해석)

  • Lee, Jin-Yong;Lee, Gyu-Sang;Song, Sung-Ho
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.925-935
    • /
    • 2007
  • Water sources in volcanic Jeju Island are almost entirely dependent on groundwater because there are actually no perennial streams or rivers due to the permeable nature of surface soils derived from basaltic or trachytic rocks. Uncontrolled development of groundwater resulted in substantial water-level decline, groundwater pollution, and seawater intrusion in several places of the island. To maintain its sustainable groundwater, the provincial government has declared some parts of the island as the Special Groundwater Conservation/Management Area since 1994. Hence, all the activities for the groundwater development in the area should obtain official permit from relevant authorities. Furthermore, to acquire information on groundwater status, a network of groundwater monitoring was established to cover most of the low land and coastal areas with the installation of automatic monitoring systems since 2001. The analysis of the groundwater monitoring data indicated that the water levels had decreased at coastal area, especially in northern part of the island. Moreover, very high electrical conductivity (EC) levels and their increasing trends were observed in the eastern part, which was ascribable to seawater intrusion by intensive pumping in recent years. Water level decline and EC rise in the coastal area are expected to continue despite the present strict control on additional groundwater development.

Analysis of Groundwater Level Changes Near the Greenhouse Complex Area Using Groundwater Monitoring Network (지하수관측망을 이용한 강변 시설재배지역 지하수위 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.13-23
    • /
    • 2022
  • The purpose of this study was to analyze the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes, which are mainly situated along rivers where water resources are easy to secure. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain and mountain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The characteristics of groundwater level changes classified by terrain type were analyzed using the observed data. Riverside wells have significant permeability coefficients and are close to rivers, so they are greatly affected by river flow and precipitation changes so that water level shows a specific pattern of annual changes. Most plain wells do not show a constant annual change, but observation wells near small rivers and small-scale greenhouse cultivation areas sometimes show annual and daily changes in which the water level drops during winter. Compared to other observation wells, mountain wells do not show significant yearly changes in water level and show general characteristics of bedrock aquifer well with a low permeability coefficient.

Applications of Gaussian Process Regression to Groundwater Quality Data (가우시안 프로세스 회귀분석을 이용한 지하수 수질자료의 해석)

  • Koo, Min-Ho;Park, Eungyu;Jeong, Jina;Lee, Heonmin;Kim, Hyo Geon;Kwon, Mijin;Kim, Yongsung;Nam, Sungwoo;Ko, Jun Young;Choi, Jung Hoon;Kim, Deog-Geun;Jo, Si-Beom
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.67-79
    • /
    • 2016
  • Gaussian process regression (GPR) is proposed as a tool of long-term groundwater quality predictions. The major advantage of GPR is that both prediction and the prediction related uncertainty are provided simultaneously. To demonstrate the applicability of the proposed tool, GPR and a conventional non-parametric trend analysis tool are comparatively applied to synthetic examples. From the application, it has been found that GPR shows better performance compared to the conventional method, especially when the groundwater quality data shows typical non-linear trend. The GPR model is further employed to the long-term groundwater quality predictions based on the data from two domestically operated groundwater monitoring stations. From the applications, it has been shown that the model can make reasonable predictions for the majority of the linear trend cases with a few exceptions of severely non-Gaussian data. Furthermore, for the data shows non-linear trend, GPR with mean of second order equation is successfully applied.

Analysis of Groundwater Conductivity and Water Temperature Changes in Greenhouse Complex by Water Curtain Cultivation (수막용수 사용으로 인한 시설재배지역의 지하수 수온과 전기전도도 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.93-103
    • /
    • 2023
  • This study aimed to analyze the impact of water curtain cultivation in the greenhouse complexes on groundwater's electric conductivity and water temperature. The greenhouse complexes are mainly situated along rivers to secure water resources for water curtain cultivation. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. As a result of analyzing the electric conductivity and water temperature, the following differences were found in the observed characteristics by region. 1) The electric conductivity and water temperature of the riverside area, where the permeability is high and close to rivers, showed a constant pattern of annual changes due to the influence of river flow and precipitation. 2) The flat land in general agricultural areas showed general characteristics of bedrock observation in the case of water temperature. Still, it seemed more affected by the surrounding well's water use and water quality. The electric conductivity did not show any particular trend and was influenced by the surrounding environment according to the location of each point.

Evaluation of Long-term Data Obtained from Seawater Intrusion Monitoring Network using Variation Type Analysis (변동유형 분석법을 이용한 해수침투 관측망 자료 평가)

  • Song, Sung-Ho;Lee, Jin-Yong;Yi, Myeong-Jae
    • Journal of the Korean earth science society
    • /
    • v.28 no.4
    • /
    • pp.478-490
    • /
    • 2007
  • With groundwater data of seawater intrusion monitoring network in coastal areas of Korea's main land, we analyzed types of seawater intrusion through the coastal aquifer. The data including groundwater level, temperature and electrical conductivity obtained from 45 monitoring wells at 25 watershed regions were evaluated. Based on statistical analysis, correlation analysis and variation type analysis, groundwater levels were mainly affected by rainfall and artificial pumping. About 78% of the monitoring wells showed average temperature higher than $15^{\circ}C$ and about 58% of them showed minimum variations less than $0.2^{\circ}C$. Electrical conductivities showed a large magnitude of variation and irregular characteristics compared with groundwater levels and temperatures. Average electrical conductivities lower than $2,000\;{\mu}S/cm$ were observed at 28 monitoring wells while those of higher than $10,000\;{\mu}S/cm$ were done at 9 monitoring wells. From the cross-correlation analysis, groundwater levels were mostly affected by precipitation while temperature and electrical conductivity showed very low correlation. Meanwhile tidal variations strongly affected the groundwater levels comparing to precipitation. We classified the long-term monitoring data according to variation types such as constant process, linear trend, cyclic variation, impulse, step function and ramp. Impulse type was dominant for variations of groundwater level, which was largely affected by rainfall or artificial pumping, the constant process was dominant for temperature. Compared with groundwater level and temperature, electrical conductivities showed various types like linear trend, step function and ramp. According to the discrepancy of variation characteristics for monitoring data at each well in the same region, periodical analysis of monitoring data is essentially required.

Experimental studies on mass transport in groundwater through fracture network using artificial fracture model

  • Tsuchihara Takeo;Yoshimura Masahito;Ishida Satoshi;Imaizumi Masayuki;Ohonishi Ryouichi
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.676-683
    • /
    • 2003
  • A laboratory experiment using artificial fracture rocks was used to understand the 3-dimensional dispersion of a tracer and the mixing process in a fractured network. In this experiment, 12cm polystyrene foam cubes with two electrodes for monitoring electric conductivity (EC) were used as artificial fractured rocks. Distilled water with 0.5mS/m was used as a tracer in water with 35mS/m and the difference of EC between the tracer and the water was monitored by a multipoint simultaneous measurement system of electrical resistance. The results showed that even if the fracture arrangement pattern was not straight in the direction of the flow, the tracer did not diffuse along individual fractures and an oval tracer plume, which was the distribution of tracer concentrations, tended to be form in the direction of the flow. The vertical cross section of the tracer distribution showed small diffusivity in the vertical direction. The calculated total tracer volume passing through each measurement point in the horizontal cross section showed while that the solute passed through measurement points near the direction of hydraulic gradient and in other directions, the passed tracer volumes were small. Using Peclet number as a criterion, it was found that the mass distribution at the fracture intersection was controlled in the stage of transition between the complete mixing model and the streamline routing model.

  • PDF

Vulnerability Evaluation for Water Supply of Irrigation Facilities: Focusing on Dangjin-si, Yesan-gun, Cheongyang-gun, South Korea (밭관개 시설물의 용수공급에 대한 취약성 평가 - 당진시, 예산군, 청양군을 대상으로 -)

  • Shin, Hyung-Jin;Kwon, Hyung-Joong;Lee, Jae-Yeong;Lee, Jin-Heong;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.33-42
    • /
    • 2018
  • This study evaluated the vulnerability of irrigation water supplied to the crops. The target areas were selected as Dangjin-si, Yesan-gun, and Cheongyang-gun. The survey items of the climate exposure were annual precipitation and rainless days. The sensitivity survey items were cultivation area, groundwater level, evapotranspiration and groundwater consumption. The survey items of the adaptability were Number of groundwater well and Water supply ratio. The survey methods for these items were investigated in a variety of ways, including "National Climate Data Service System", "Korean Statistical Information Service", "National ground water monitoring network in korea annual report" and "Chungcheongnam-do Statistical Yearbook", "HOMWRS". Vulnerability assessment results were rated within the range of 0~100 points. The first grade was rated 0-25, the second grade 26-50, the third grade 51-75, and the fourth grade 76-100. And the lower the score, the lower the vulnerability. As a result, Cheongyang-gun showed a high vulnerability of over 50 points, Dangjin-si showed a low vulnerability rating of 31.20 points and a Yesan-gun of 36.00 points.