• Title/Summary/Keyword: Rupture energy

Search Result 214, Processing Time 0.025 seconds

Thermal Aging and Creep Rupture Behavior of STS 316 (STS 316의 시효 열화 처리와 크리프 거동 특성)

  • 임병수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.123-129
    • /
    • 1999
  • Although type 316 stainless steel is widely used such as in reactors of petrochemical plants and pipes of steam power plants and s attracting attention as potential basic material for the fast breeder reactor structure alloys in nuclear power plants and is attracting attention as potential basic material for the fast breeder reactor structure alloys in nuclear power plants the effect of precipitates which form during the long term exposure at service temperature on creep properties is not known sufficiently. In this study to investigate the creep properties and the influence of prior aging on the microstructure to form precipitates specimens were first solutionized at 113$0^{\circ}C$ for 20 minutes and then aged for different times of 0 hr, 100 hrs, 1000 hrs and 2200 hrs at 75$0^{\circ}C$ After heat treatments tensile tests both at room temperature and $650^{\circ}C$ and constant load creep ruptuere tests were carried out.

  • PDF

Simplified modelling of continous buried pipelines subject to earthquake fault rupture

  • Paolucci, Roberto;Griffini, Stefano;Mariani, Stefano
    • Earthquakes and Structures
    • /
    • v.1 no.3
    • /
    • pp.253-267
    • /
    • 2010
  • A novel simple approach is presented for the seismic analysis of continuous buried pipelines subject to fault ruptures. The method is based on the minimization of the total dissipated energy during faulting, taking into account the basic factors that affect the problem, namely: a) the pipe yielding under axial and bending load, through the formation of plastic hinges and axial slip; b) the longitudinal friction across the pipe-soil interface; c) the lateral resistance of soil. The advantages and drawbacks of the proposed method are highlighted through a comparison with previous approaches, as well as with finite element calculations accounting for the 3D kinematics of the pipe-soil-fault systems under large deformations. Parametric analyses are also provided to assess the relative influence of the various parameters affecting the problem.

Reliability Prediction of Long-term Creep Strength of Gr. 91 Steel for Next Generation Reactor Structure Materials (미래형 원자로 구조 재료용 Gr. 91 강의 장시간 크리프 강도의 신뢰성 예측)

  • Kim, Woo-Gon;Park, Jae-Young;Yin, Song-Nan;Kim, Dae-Whan;Park, Ji-Yeon;Kim, Seon-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.275-280
    • /
    • 2011
  • This paper focuses on reliability prediction of long-term creep strength for Modified 9Cr-1Mo steel (Gr. 91) which is considered as one of the structural materials of next generation reactor systems. A "Z-parameter" method was introduced to describe the magnitude of standard deviation of creep rupture data to the master curve which can be plotted by log stress vs. The larson-Miller parameter (LMP). Statistical analysis showed that the scattering of the Z-parameter for the Gr. 91 steel well followed normal distribution. Using this normal distribution of the Z-parameter, the various reliability curves for creep strength design, such as stress-time temperature parameter reliability curves (${\sigma}$-TTP-R curves), stress-rupture time-reliability curves (${\sigma}-t_{r}-R$ curves), and allowable stress-temperature- reliability curves ([${\sigma}$]-T-R curves) were reasonably drawn, and their results are discussed.

A practical power law creep modeling of alloy 690 SG tube materials

  • Lee, Bong-Sang;Kim, Jong-Min;Kwon, June-Yeop;Choi, Kwon-Jae;Kim, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2953-2959
    • /
    • 2021
  • A new practical modeling of the Norton's power law creep is proposed and implemented to analyze the high temperature behaviors of Alloy 690 SG tube material. In the model, both the stress exponent n and the rate constant B are simply treated as the temperature dependent parameters. Based on the two-step optimization procedure, the temperature function of the rate constant B(T) was determined for the data set of each B value after fixing the stress exponent n value by using the prior optimized function at each temperature. This procedure could significantly reduce the numerical errors when using the power law creep equations. Based on the better description of the steady-state creep rates, the experimental rupture times could also be well predicted by using the Monkman-Grant relationship. Furthermore, the difference in tensile strengths at high temperatures could be very well estimated by assuming the imaginary creep stress related to the given strain rate after correcting the temperature effects on the elastic modulus.

Probabilistic Assesment of the Effects of Vapor Cloud Explosion on a Human Body (증기운 폭발이 인체에 미치는 영향에 대한 확률론적 평가)

  • Yoon, Yong-Kyun;Ju, Eun-Hye
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.52-65
    • /
    • 2021
  • In this study, authors analyzed the vapor cloud explosion induced by propane leak at the PEMIX Terminal, which is the propane storage facility outside of Mexico City. TNT equivalence mass for the leaked 4750 kg propane was estimated to be 9398 kg. Blast parameters such as peak overpressure, positive phase duration, and impact at 40-400 (m) away from the center of the explosion were calculated by applying TNT Equivalency Method and Multi-Energy Method. The probability of damage due to lung damage, eardrum rupture, head impact, and whole-body displacement impact by applying the probit function obtained using blast parameters was evaluated. The peak overpressure obtained using Multi-Energy Method was found to be greater than the peak overpressure obtained by applying the TNT Equivalency Method at all distances considered, but it was evaluated that there was no significant difference from the points above 200 m. The peak overpressure obtained by Multi-Energy Method was computed to assess the extent of damage to the structure, and it was shown that structures within 100 m of the explosion center would collapse completely, and that the glasses of the structures 400 m away would be almost broken. The probability of death due to lung damage was shown to vary depending on a human body's position located in the propagating direction of shock wave, and if there is a reflecting surface in the immediate surroundings of a human body, the probability of death was estimated to be the greatest. The impact of shock wave on lung damage, eardrum rupture, head impact, and whole-body displacement impact was evaluated and found to affect whole-body impact < lung damage < eardrum rupture

Flaw Assessment Method of Pressure Tube in CANDU Reactor

  • Kim, Jung-Gyu;Na, Bok-Gyun;Hwang, Jong-Keun;Park, Keon-Woo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.291-295
    • /
    • 1996
  • In CANDU reactor, each pressure tubes contain twelve fuel bundles and provide the inlet and outlet for the primary coolant. If a leak develops in the pressure tube, it is detected by Annulus Gas System which contains circulating dry $CO_2$ gas. Since the leaks caused by the flaws are resulted in pressure tube break, establishment of flaw assessment method is very significant in view of the fracture mechanics. In this paper, various criteria for assessing the flaws are presented to prevent the tube rupture and ensure the integrity of reactor operating.

  • PDF

A Study on the Characteristics of High Temperature and Mechanisms for Creep Deformation of AZ31 Mg Alloy (AZ31마그네슘 합금의 고온특성 및 크리이프 변형기구에 관한연구)

  • Kang, D.M.;An, J.O.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.96-101
    • /
    • 2005
  • Magnesium alloys have been widely used for many structural components of automobiles and aircraft because of high specific strength and good cast ability in spite of hexagonal closed-packed crystal structure of pure magnesium. In this study, uniaxial tension tests at high temperature and creep tests are done in order to investigate the characteristics of high temperature and mechanisms for creep deformation of AZ31 Mg alloy. Yield stress and ultimate tensile stress decreased with increasing temperature, but elongation increased from results of uniaxial tension test at high temperature. The apparent activation energy Qc, the applied stress exponent n and rupture life have been determined during creep of AZ31 Mg alloy over the temperature range of 473K to 573K and stress range of 23.42 MPa to 93.59 MPa, respectively, in order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller, whose data are sent to computer. At around the temperature of $473K{\sim}493K$ and under the stress level of $62.43{\sim}93.59%MPa$, and again at around the temperature of $553K{\sim}573K$ and under the stress level of $23.42{\sim}39.00MPa$, the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy for the creep deformation was nearly equal, respectively, and a little low to that of the self diffusion of Mg alloy including aluminum. Also rupture surfaces at high temperature have had bigger dimples than those at lower temperature by SEM.

  • PDF

Finite Element Analysis of Stress and Strain Distribution on Thin Disk Specimen for SCC Initiation Test in High Temperature and Pressure Environment (고온 고압 응력부식균열 개시 시험용 디스크 시편의 응력과 변형에 대한 유한요소 해석)

  • Tae-Young Kim;Sung-Woo Kim;Dong-Jin Kim;Sang-Tae Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.44-54
    • /
    • 2023
  • The rupture disk corrosion test (RDCT) method was recently developed to evaluate stress corrosion cracking (SCC) and was found to have great potential for the real-time detection of SCC initiation in a high temperature and pressure environment, simulating the primary water coolant of pressurized water reactors. However, it is difficult to directly measure the stress applied to a disk specimen, which is an essential factor in SCC initiation. In this work, finite element analysis (FEA) was performed using ABAQUSTM to calculate the stress and deformation of a disk specimen. To determine the best mesh design for a thin disk specimen, hexahedron, hex-dominated, and tetrahedron models were used in FEA. All models revealed similar dome-shaped deformation behavior of the disk specimen. However, there was a considerable difference in stress distribution in the disk specimens. In the hex-dominated model, the applied stress was calculated to be the maximum at the dome center, whereas the stress was calculated to be the maximum at the dome edge in the hexahedron and tetrahedron models. From a comparison of the FEA results with deformation behavior and SCC location on the disk specimen after RDCT, the most proper FE model was found to be the tetrahedron model.

Optimized Flooding Analysis Method for Compartment for Nuclear Power Plant (원전 격실에 대한 최적 침수분석 방법)

  • Song, Dong-Soo;Kim, Sang-Yeol
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.75-80
    • /
    • 2012
  • In this paper a realistic bounding method for flooding analysis following rupture of large size of thanks and piping is defined. Mass and energy release during main feedwater line break accident is analyzed with RETRAN code. It is modeled that the main feed water control valve is closed in 5.0 seconds after reactor trip. In result of the analysis, largest mass and energy is discharged at 70% reactor power. The flood sources for main feedwater room are calculated when piping failure occurs in the high energy line and medium energy line. Based on the result of flood level (1.43m), it is investigated that all of the safety-related environmental qualification equipments are well located above the flood level.

A Study on the Analysis vibration of fluid flow in ECV

  • WANGWENHAI, WANGWENHAI;Cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.115-119
    • /
    • 2015
  • Pipe vibration caused great threat to the safety in production. Strong pipeline vibration will line accessories, especially the joints and pipe fittings etc. pipe joints loosening and rupture, causing serious accidents. By the action of the compressor constant fluid flow within the pipe, this process produces pulsating fluid flow may cause vibration of the pipe, thereby reducing the efficiency of the pipeline, structural vibration induced fatigue, thereby resulting in even piping structural damage. This paper studies on the vibration problems caused by fluid, by analyzing the causes of pipeline vibration and factors affecting pipeline vibrations, FEM (Finite Element Method) analysis of modal and enforced vibration.