• Title/Summary/Keyword: Rupture energy

Search Result 213, Processing Time 0.023 seconds

Plant Cooldown Test Simulation After Steam Generator U-Tube Rupture under Onsite Power Available Without Safety Injection (증기발생기 세관파열사고 후 소외전원 가용 및 비상냉각수 주입 배제 조건하에서의 발전소냉각에 관한 실험 모사)

  • Kim, Du-Ill;Kim, Hee-Cheol;Auh, Geun-Sun;Kim, Joon-Sung;Park, Jae-Don
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.483-490
    • /
    • 1995
  • The objective of the PKL III A 4.4 experiment is to examine that the plant could be controlled by manually operative actions "after Steam Generator Tube Rupture under Offsite Power Available without Safety Injection". In order to verify the limitation and ability of the system code NLOOP in the expeiment simulation, the behaviors of the PKL III facility obtained in the experiment are compared with the results of NLOOP code. NLOOP code, which is originally developed to simulate the transients of the Westinghouse type PWRs by KAERI/SIEMENS, modified properly to simulate the PKL III facility. Particular attention is given to the RCS mass How rate of the natural circulation in loops and the termination behavior of the natural circulation in the isolated loop. The comparisons between the experimental and calculational results show the simulation ability and problems of the code. the code.

  • PDF

A Study on the Simulation of Grounding of Double Hull Tanker using LS/DYNA3D (LS/DYNA3D를 이용한 이중선체 유조선의 좌초에 관한 연구)

  • 이상갑
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 1998
  • This paper descirbes a series of numberical simulations of grounding accidents of four 40,000 DWT Conventional and Advanced Double Hull tanker bottom structures using LS/DYNA3D. The overall objective of this study is no understand the structural failure and energy absorbing mechanisms during grounding events for candidate double hull tanker bottom structures, which lead to the initiation of inner shell rupture and cause the kinetic energy dissipation to bring the ship to a stop. These nuberical simulations of the grounding events will contribute to future improvements in tanker safety at the design stage.

  • PDF

Evaluation of the SWR′s Early Pressure Variations in the KALIMER IHTS (KALIMER IHTS의 SWR 초기 압력파 거동 분석)

  • 김연식;심윤섭;김의광;어재혁
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.122-129
    • /
    • 2002
  • The analytical models and algorithm of the SPIKE code, which has been developed by KAERI's KALIMER team to investigate the sodium-water reaction phenomena in the liquid metal reactor, were introduced with its verification calculation results. The sodium water reaction of KALIMER IHTS was evaluated. Early stage of the sodium-water reaction consists of wave and mass transfer regimes. The pressure variations were independent of specific design features in the wave transfer regime. However in the mass transfer regime, the pressure variations were strongly dependent on cover gas volume and rupture disk set pressure. The early stage SWR analysis showed that the KALIMER IHTS with an appropriate cover gas volume and rupture disk set pressure had enough margin to its design pressure.

A Case Study on the Plumbing Pipe Burst of Floor Radiant Heating (바닥 복사난방 배관설비에서 배관파열 사례 연구)

  • Jung, Hong-Do;Shin, Youn-Han;Park, Chen-Kwan;Jeong, Hyo-Min;Chung, Han-Shik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.10
    • /
    • pp.745-749
    • /
    • 2012
  • Heating pipes burst was occurred in the apartment complex that was applied floor radiant heating system. There were two opinions for the cause of the bursted heating pipes that was the flaw during construction and defects in the product and also there were conflicting among them. Officials analyzed it in order to investigate the cause of the rupture. Tensile test results showed different tensile strength between the lower part of heating pipe and the upper part of heating pipes. The lower tensile strength is maintained while the top was not secured. The reason why rupture heating pipes is that flow velocity isn't secured and then the air get stagnant. Stagnant air makes hardening. It is caused rupturing. The proper flow rate was confirmed 0.166 m/sec after experiment. It isn't make stagnant air inside heating pipes.

A Review of the Progress with Statistical Models of Passive Component Reliability

  • Lydell, Bengt O.Y.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.349-359
    • /
    • 2017
  • During the past 25 years, in the context of probabilistic safety assessment, efforts have been directed towards establishment of comprehensive pipe failure event databases as a foundation for exploratory research to better understand how to effectively organize a piping reliability analysis task. The focused pipe failure database development efforts have progressed well with the development of piping reliability analysis frameworks that utilize the full body of service experience data, fracture mechanics analysis insights, expert elicitation results that are rolled into an integrated and risk-informed approach to the estimation of piping reliability parameters with full recognition of the embedded uncertainties. The discussion in this paper builds on a major collection of operating experience data (more than 11,000 pipe failure records) and the associated lessons learned from data analysis and data applications spanning three decades. The piping reliability analysis lessons learned have been obtained from the derivation of pipe leak and rupture frequencies for corrosion resistant piping in a raw water environment, loss-of-coolant-accident frequencies given degradation mitigation, high-energy pipe break analysis, moderate-energy pipe break analysis, and numerous plant-specific applications of a statistical piping reliability model framework. Conclusions are presented regarding the feasibility of determining and incorporating aging effects into probabilistic safety assessment models.

Evaluation of Creep-Fatigue Damage of KALIMER Reactor Internals Using the Elastic Analysis Method in RCC-MR

  • Koo, Gyeong-Hoi;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.566-584
    • /
    • 2001
  • In this paper, the progressive deformation and the creep-fatigue damage for the conceptually designed reactor internals of KALIMER(Korea Advanced Liquid MEtal Reactor) are carried out by using the elastic analysis method in the RCC-MR code for normal operating conditions including the thermal load, seismic load (OBE) and dead weight. The maximum operating temperature of this reactor is 53$0^{\circ}C$ and the total service lifetime is 30 years. Thus, the time- dependent creep and stress-rupture effects become quite important in the structural design. The effects of the thermal induced membrane stress on the creep-fatigue damage are investigated with the risk of the elastic follow-up. To calculate the thermal stress, detailed thermal analyses considering conduction, convection and radiation heat transfer mechanisms are carried out with the ANSYS program. Using the results of the elastic analysis, the progressive deformation and creep-fatigue damages are calculated step by step using the RCC-MR in detail. This paper ill be a very useful guide for an actual application of the high temperature structural design of the nuclear power plant accounting for the time-dependent creep and stress-rupture effects.

  • PDF

Variability of plant risk due to variable operator allowable time for aggressive cooldown initiation

  • Kim, Man Cheol;Han, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1307-1313
    • /
    • 2019
  • Recent analysis results with realistic assumptions provide the variability of operator allowable time for the initiation of aggressive cooldown under small break loss of coolant accident or steam generator tube rupture with total failure of high pressure safety injection. We investigated how plant risk may vary depending on the variability of operators' failure probability of timely initiation of aggressive cooldown. Using a probabilistic safety assessment model of a nuclear power plant, we showed that plant risks had a linear relation with the failure probability of aggressive cooldown and could be reduced by up to 10% as aggressive cooldown is more reliably performed. For individual accident management, we found that core damage potential could be gradually reduced by up to 40.49% and 63.84% after a small break loss of coolant accident or a steam generator tube rupture, respectively. Based on the importance of timely initiation of aggressive cooldown by main control room operators within the success criteria, implications for improvement of emergency operating procedures are discussed. We recommend conducting further detailed analyses of aggressive cooldown, commensurate with its importance in reducing risks in nuclear power plants.

Quality Characteristics of Frozen Stored Mungbean Starch Gels Added with Sucrose Fatty Acid Ester

  • Choi, Eun-Jung;Oh, Myung-Suk
    • Food Quality and Culture
    • /
    • v.3 no.2
    • /
    • pp.53-58
    • /
    • 2009
  • This study was conducted to investigate the quality characteristics of frozen stored mungbean starch gels added with sucrose fatty acid ester (SE). The study showed a delay of gelatinization of mungbean starch by SE addition through the measurements conducted by using Rapid Visco Analyzer (RVA) and Differential Scanning Calorimeter (DSC). In the color of SE added frozen stored gels, lightness (L) and yellowness (b) values were increased compared to those of values measured from freshly prepared gel, whereas redness (a) value was decreased. The addition of 1% SE on mungbean starch gel prevented the color change during frozen storage. Rupture stress and rupture energy of frozen stored gel was higher than those of freshly prepared gel, whereas rupture strain of frozen stored gel was lower than that of freshly prepared gel. The addition of 1% SE on mungbean starch gel prevented the change of rupture characteristics during frozen storage. Texture profile analysis(TPA) characteristics revealed a significant change of the gel texture during frozen storage by showing an increase of hardness of the frozen stored gels compared to the freshly prepared gels with newly discovered fracturability, which resulted to show a large difference of gel texture by showing the disappearance of adhesiveness and large reduction of cohesivenes. The addition of 1% SE on mungbean starch gel prevented the change of TPA characteristics during frozen storage. Scanning electron micrographs showed that network structure of frozen stored gel was more rough than that of freshly prepared gel, and the addition of 1% SE on mungbean starch gel could suppress the breakdown of network structure. Thus the addition of 1.0% SE on mungbean starch gel was appropriate method for remaining gel characteristics during frozen storage.

Piping Failure Frequency Analysis for the Main Feedwater System in Domestic Nuclear Power Plants

  • Choi Sun Yeong;Choi Young Hwan
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.112-120
    • /
    • 2004
  • The purpose of this paper is to analyze the piping failure frequency for the main feedwater system in domestic nuclear power plants(NPPs) for the application to an in-service inspection(ISI), leak before break(LBB) concept, aging management program(AMP), and probabilistic safety analysis(PSA). First, a database was developed for piping failure events in domestic NPPs, and 23 domestic piping failure events were collected. Among the 23 events, 12 locations of wall thinning due to flow accelerated corrosion(FAC) were identified in the main feedwater system in 4 domestic WH 3-loop NPPs. Two types of the piping failure frequency such as the damage frequency and rupture frequency were considered in this study. The damage frequency was calculated from both the plant population data and damage(s) including crack, wall thinning, leak, and/or rupture, while the rupture frequency was estimated by using both the well-known Jeffreys method and a new method considering the degradation due to FAC. The results showed that the damage frequencies based on the number of the base metal piping susceptible to FAC ranged from $1.26{\times}10^{-3}/cr.yr\;to\;3.91{\times}10^{-3}/cr.yr$ for the main feedwater system of domestic WH 3-loop NPPs. The rupture frequencies obtained from the Jeffreys method for the main feedwater system were $1.01{\times}10^{-2}/cr.yr\;and\;4.54{\times}10^{-3}/cr.yr$ for the domestic WH 3-loop NPPs and all the other domestic PWR NPPs respectively, while those from the new method considering the degradation were higher than those from the Jeffreys method by about an order of one.

Morphological and Hemodynamic Parameters for Middle Cerebral Artery Bifurcation Aneurysm Rupture Risk Assessment

  • Qin, Hao;Yang, Qixia;Zhuang, Qiang;Long, Jianwu;Yang, Fan;Zhang, Hongqi
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.5
    • /
    • pp.504-510
    • /
    • 2017
  • Objective : To investigate the morphological and hemodynamic parameters associated with middle cerebral artery (MCA) bifurcation aneurysm rupture. Methods : A retrospective study of 67 consecutive patients was carried out based on 3D digital subtraction angiography data. Morphological and hemodynamic parameters including aneurysm size parameters (dome width, height, and perpendicular height), longest dimension from the aneurysm neck to the dome tip, neck width, aneurysm area, aspect ratio, Longest dimension from the aneurysm neck to the dome tip (Dmax) to dome width, and height-width, Bottleneck factor, as well as wall shear stress (WSS), low WSS area (LSA), percentage of LSA (LSA%) and energy loss (EL) were estimated. Parameters between ruptured and un-ruptured groups were analyzed. Receiver operating characteristics were generated to check prediction performance of all significant variables. Results : Sixty-seven patients with MCA bifurcation aneurysm were included (31 unruptured, 36 ruptured). Dmax (p=0.008) was greater in ruptured group than that in un-ruptured group. D/W (p<0.001) and the percentage of the low WSS area ($0.09{\pm}0.13$ vs. $0.01{\pm}0.03$, p<0.001) were also greater in the ruptured group. Moreover, the EL in ruptured group was higher than that in unruptured group ($6.39{\pm}5.04$ vs. $1.53{\pm}0.86$, p<0.001). Multivariate regression analysis suggested D/W and EL were significant predictors of rupture of MCA bifurcation aneurysms. Correlation analyses revealed the D/W value was positively associated with the EL (R=0.442, p<0.01). Conclusion : D/W and EL might be the most two favorable factors to predict rupture risk of MCA bifurcation aneurysms.