• Title/Summary/Keyword: Rupture Disc

Search Result 32, Processing Time 0.017 seconds

A Study on the Vulcanization System and Two-Step Foaming Properties for Natural Rubber Foam (천연고무의 가황시스템 및 성형공정에 따른 2단 발포 특성 연구)

  • Sunhee Lee;Ye-Eun Park;Dikshita Chowdhury
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.246-255
    • /
    • 2023
  • In this study, we investigated for natural rubber foam to replace petrochemical-based neoprene foam. Experiments were conducted on vulcanization system and 2-step foaming process of natural rubber. The vulcanization system were EV(Efficient Vulcanization Cure), Semi-EV(Semi-Efficient Vulcanization Cure) and CV(Conventional Vulcanization Cure). In the 2-step foaming process, first molding temperature was 140℃, times were 15, 20, 25, and 30minutes, and the second molding temperature was 160℃, the times 5, 10, 15, and 20minutes. The cure and viscosity characterization were evaluated by oscillating disc rheometer (ODR) and mooney viscosmeter. Various mechanical characteristics, including hardness, tensile strength, elongation at the point of rupture, and tear strength, were quantified. Subsequently, an assessment of alterations in these mechanical attributes was conducted post-immersion in a NaCl solution. In addition degree of volume change was measured after immersing the NR foam in NaCl solution and the low-temperature permanent compression set was evaluated at 4℃. And expansion ratio and shrinkage ratio of NR foam were evaluated for 28 days. As a result the EV vulcanization system showed the least change in physical properties before and after salt water immersion, and the lowest shrinkage ratio for 28 days. In addition it was confirmed that the 2-step foaming optimum condition differed depending on the appropriate vulcanization condition.

Fire Hazard of PP and LLDPE dust in Chemical Plant Process (석유화학플랜트에서 발생하는 PP(Poly Propylene) 및 LLDPE(Linear Low Density Poly Ethylene) 분진의 연소 위험성에 관한 연구)

  • 김정환;이창우;현성호;권경옥
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • Thermal properties of PP and LLDPE dusts from chemical plant and their risks of coexisting with oxidizer were investigated by a pressure vessel. The thermal decomposition of PP and LLDPE dusts with temperature using DSC and the weight loss with temperature using TGA were also investigated to find the thermal hazard of PP and LLDPE dusts. Using the pressure vessel which can estimate ignition and explosion of PP and LLDPE dusts coexisting with oxidizer, a series of bursting of a rupture disc, experiments has been conducted by varying the orifice diameters the weight ratio of the sample coexisting with oxidizers and the species of oxidizer. And fire gases was measured by gas analyser ($ECOM-A^+$). According to the results of the thermal analysis of PP and LLDPE dusts, the decomposition temperature range of PP and LLDPE dusts was 200 to 350 and 300 to $500^{\circ}c$, respectively. The risk of PP and LLDPE dusts coexisting with oxidizer was increased as the orifice diameter was decreased. On the other hand, it was increased as the weight ratio of the sample to the oxidizer were increased. In addition, the risk of PP and LLDPE dusts coexisting with oxidizer was affected by the decomposition temperature of the sample and oxidizer. It is found that the risk of fire becomes high when the decomposition temperature of the sample is about same as that of oxidizer. Also, the fire gases was occurred carbon monoxide and carbon dioxide. The amount of carbon monoxide generated was found to be much higher in PP decomposition than in LLDPE due to incomplete combustion of PP which has high content of carbon in chemical compound.

  • PDF