• Title/Summary/Keyword: Runoff of Nonpoint Pollutant

Search Result 139, Processing Time 0.021 seconds

Application of AGNPS Model for Nitrogen and Phosphorus Load in a Stream Draining Small Agricultural Watersheds (소규모 농업유역에서 질소와 인의 하천 부하에 대한 AGNPS 모형의 적용)

  • Kim, Min-Kyeong;Choi, Yun-Yeong;Kim, Bok-Jin;Lim, Jun-Young;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.3
    • /
    • pp.192-200
    • /
    • 2001
  • The event-based agricultural non-point source(AGNPS) pollution model was applied to estimate the loads of nitrogen and phosphorus in a stream draining small agricultural watersheds. Calibration and verification of the model were performed using observed data collected from rainfall events in the Imgo watersheds during 1997-1998. Parameter calibrations were made for the runoff curve number. The peak flow volumes in the watersheds were well reproduced by the modified model. Average deviation between observed and simulated values was 10%, and this match was confirmed by the coefficient of efficiency value of 0.97. The deviations tended to increase as the peak flows increased. The simulated total N concentrations in the stream water were fairly close to the measured values, and the coefficient of efficiency in the estimation was 0.93. However, there were relatively large variations between calculated and observed values of total P concentration, and the coefficient of efficiency in the estimation was 0.74. Any inaccuracies that arise in estimating runoff flow and nutrient loading can not be explained exactly and further adjustment and refinements may be needed for application of AGNPS in agricultural watersheds. With this restrictions in mind, it can be concluded that AGNPS can provide realistic estimates of nonpoint source nutrient yields.

  • PDF

A Study on the Installation of a Sewage Separator Pipe inside an Existing Combined Sewer System for CSO Control (기존 합류식 하수관거에 CSO 제어를 위한 하수분리관의 설치에 관한 연구)

  • Guerra, Heidi B.;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.85-93
    • /
    • 2021
  • Sewage separation which often involves installing a new pipe to separate wastewater flow from stormwater runoff flow can be costly and depends highly on its feasibility in a site. To be able to develop a potentially more economical alternative that can also lessen major road traffic disturbance during this process, a different approach where a smaller sewage separator pipe is installed inside an existing combined sewer pipe was investigated. A small-scale of a box sewer and the proposed sewage separator pipe was constructed in the laboratory to observe and compare the deposition of solids and other solid-associated major pollutants at different flow rates. In addition, three-dimensional flow simulations considering five different scenarios were conducted using Ansys Fluent to observe the effect of the proposed sewage separator pipe to the hydraulic flow if installed inside the combined sewer pipe. Results revealed that the deposition of TSS, TCOD, TN, and TP were reduced by at least 60% when the wastewater was conveyed by the sewage separator pipe instead of the combined sewer pipe. Moreover, the flow simulations conducted showed that there was little to no major disturbance in hydraulic flow and velocity distribution when the sewage separator was installed inside a straight pipe and even at pipe transitions such as intersections, turns, and drop in elevation. Considering the pipe dimensions and the results of the study, the proposed approach can be promising in terms of reduction in pollutant deposition without a major effect on the hydraulic flow. Further investigation and cost-analysis should be done in the future to support these preliminary findings and help alleviate the problems caused by combined sewer overflows by introducing an alternative approach.

Climate Change Impact on Nonpoint Source Pollution in a Rural Small Watershed (기후변화에 따른 농촌 소유역에서의 비점오염 영향 분석)

  • Hwang, Sye-Woon;Jang, Tae-Il;Park, Seung-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.209-221
    • /
    • 2006
  • The purpose of this study is to analyze the effects of climate change on the nonpoint source pollution in a small watershed using a mid-range model. The study area is a basin in a rural area that covers 384 ha with a composition of 50% forest and 19% paddy. The hydrologic and water quality data were monitored from 1996 to 2004, and the feasibility of the GWLF (Generalized Watershed Loading function) model was examined in the agricultural small watershed using the data obtained from the study area. As one of the studies on climate change, KEI (Korea Environment Institute) has presented the monthly variation ratio of rainfall in Korea based on the climate change scenario for rainfall and temperature. These values and observed daily rainfall data of forty-one years from 1964 to 2004 in Suwon were used to generate daily weather data using the stochastic weather generator model (WGEN). Stream runoff was calibrated by the data of $1996{\sim}1999$ and was verified in $2002{\sim}2004$. The results were determination coeff, ($R^2$) of $0.70{\sim}0.91$ and root mean square error (RMSE) of $2.11{\sim}5.71$. Water quality simulation for SS, TN and TP showed $R^2$ values of 0.58, 0.47 and 0.62, respectively, The results for the impact of climate change on nonpoint source pollution show that if the factors of watershed are maintained as in the present circumstances, pollutant TN loads and TP would be expected to increase remarkably for the rainy season in the next fifty years.

EMC and Unit Loads of Pollutants Generated from Tomato Cultivation during Rainfall (강우시 시설재배지역의 오염물질 유출 EMC 및 원단위 산정)

  • Jeon, Je Chan;Kwon, Koo Ho;Lee, Sang Hyeub;Lee, Jea Woon;Gwon, Heun Gag;Min, Kyung Sok
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.555-566
    • /
    • 2013
  • Total maximum daily load enforced in 2004 is a program to evaluate the amount of pollutants by each land use type and manage to meet a target water quality of each waterbody. The many research to calculate runoff load of pollutants by landuse type have been studied. This study was conducted to calculate pollutants EMC, load and unit load in stormwater runoff generated from tomato growing area. Monitoring was conducted about 32 event during 4years and water quality parameters such as BOD, $COD_{Mn}$, TOC, TSS, TN, TP, $NH_3-N$, $NO_3-N$, $PO_4-P$ were analyzed at the laboratory. The average EMC were measured as follows: 9.6 BOD mg/L, 17.2 $COD_{Mn}$ mg/L, 5.5 TOC mg/L, 319.4 TSS mg/L, 4.4 T-N mg/L, 2.6 T-P mg/L, 0.5 $NH_3-N$ mg/L, 0.04 $NO_2-N$ mg/L, 2.6 $NO_3-N$ mg/L, 0.8 $PO_4-P$ mg/L. TN and TP is dichargeed as $NO_3-N$ and particle phosphorus type, respectively.

Operating Status and Improvement Plans of Ten Wetlands Constructed in Dam Reservoirs in Korea (국내 10개 댐저수지 인공습지의 운영현황 및 개선방안)

  • Choi, Kwangsoon;Kim, Sea Won;Kim, Dong Sup;Lee, Yosang
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.431-440
    • /
    • 2014
  • To propose the improvement and management plans to strengthen the pollutant removal efficiency of dam reservoir's constructed wetlands(CWs), the operation status and configuration of CWs (including water depth, operational flow, water flow distribution, residence time, and pollutant removal efficiency, aspect ratio, open water/vegetation ratio etc.) were analyzed in 10 major wetlands constructed in dam reservoirs. The pollutant concentrations in the inflows of the studied CWs were lower than those of American and European constructed wetlands. Especially, organic matter concentrations in all of inflows were below 3 mg/L(as BOD) due to advanced treatment of sewage disposal plant and an intake of low concentration water during dry and normal seasons. The average removal efficiency of total nitrogen(TN) and total phosphorus(TP) for 10 CWs ranged from 7.6~67.6%(mean 24.9%) and -4.9~74.5%(mean 23.7%), respectively, showing high in wetlands treating municipal wastewater. On the other hand, the removal efficiency of BOD was generally low or negative with ranging from -133.3 to 41.7%. From the analysis of the operation status and configuration of CWs, it is suggested that the low removal efficiency of dam reservoir's CWs were caused by both structural (inappropriate aspect ratio, excessive open water area) and operational (neglecting water-level management, lack of facilities and operation for first flush treatment, lake of monitoring during rainy events) problems. Therefore, to enable to play a role as a reduction facility of non-point source(NPS) pollutants, an appropriate design and operation manuals for dam reservoir's CW is urgently needed. In addition, the monitoring during rainy events, when NPS runoff occur, must be included in operation manual of CW, and then the data obtained from the monitoring is considered in estimation of the pollutant removal efficiency by dam reservoir's CW.

Sewer Decontamination Mechanism and Pipe Network Monitoring and Fault Diagnosis of Water Network System Based on System Analysis (시스템 해석에 기초한 하수관망 오염 매카니즘과 관망 모니터링 및 이상진단)

  • Kang, OnYu;Lee, SeungChul;Kim, MinJeong;Yu, SuMin;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.980-987
    • /
    • 2012
  • Nonpoint source pollution causes leaks and overtopping, depending on the state of the sewer network as well as aggravates the pollution load of the aqueous water system as it is introduced into the sewer by wash-off. According, the need for efficient sewer monitoring system which can manage the sewage flowrate, water quality, inflow/infiltration and overflow has increased for sewer maintenance and the prevention of environmental pollution. However, the sewer monitoring is not easy since the sewer network is built in underground with the complex nature of its structure and connections. Sewer decontamination mechanism as well as pipe network monitoring and fault diagnosis of water network system on system analysis proposed in this study. First, the pollution removal pattern and behavior of contaminants in the sewer pipe network is analyzed by using sewer process simulation program, stormwater & wastewater management model for expert (XP-SWMM). Second, the sewer network fault diagnosis was performed using the multivariate statistical monitoring to monitor water quality in the sewer and detect the sewer leakage and burst. Sewer decontamination mechanism analysis with static and dynamic state system results showed that loads of total nitrogen (TN) and total phosphorous (TP) during rainfall are greatly increased than non-rainfall, which will aggravate the pollution load of the water system. Accordingly, the sewer outflow in pipe network is analyzed due to the increased flow and inflow of pollutant concentration caused by rainfall. The proposed sewer network monitoring and fault diagnosis technique can be used effectively for the nonpoint source pollution management of the urban watershed as well as continuous monitoring system.

Development and Application of the SWAT HRU Mapping Module for Estimation of Groundwater Pollutant Loads for Each HRU in the SWAT Model (SWAT HRU별 지하수 오염부하량 산정을 위한 SWAT HRU Mapping Module 개발 및 적용)

  • Ryu, Ji Chul;Mun, Yuri;Moon, Jongpil;Kim, Ik Jae;Ok, Yong Sik;Jang, Won Seok;Kang, Hyunwoo;Lim, Kyoung Jae
    • Journal of Environmental Policy
    • /
    • v.10 no.1
    • /
    • pp.49-70
    • /
    • 2011
  • The numerous efforts have been made in understanding generation and transportation mechanism of nonpoint source pollutants from agricultural areas. Also, the water quality degradation has been exacerbated over the years in many parts of Korea as well as other countries. Nonpoint source pollutants are transported into waterbodies with direct runoff and baseflow. It has been generally thought that groundwater quality is not that severe compared with surface water quality. However its impacts on groundwater in the vicinity of stream quality is not negligible in agricultural areas. The SWAT model has been widely used in hydrology and water quality studies worldwide because of its flexibilities and accuracies. The spatial property of each HRU, which is the basic computational element, is not presented. Thus, the SWAT HRU mapping module was developed in this study and was applied to the study watershed to evaluate recharge rate and $NO_3-N$ loads in groundwater. The $NO_3-N$ loads in groundwater on agricultural fields were higher than on forests because of commercial fertilizers and manure applied in agricultural fields. The $NO_3-N$ loads were different among various crops because of differences in crop nutrient uptake, amount of fertilizer applied, soil properties in the field. As shown in this study, the SWAT HRU mapping module can be efficiently used to evaluate the pollutant contribution via baseflow in agricultural watershed.

  • PDF

Analysis of Factors Affecting Retention Time in Grassed Swale (식생수로에서 유하시간에 영향을 주는 인자 분석)

  • Paek, Seoungbong;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.303-310
    • /
    • 2015
  • Recently the water quality management policy gives priority to management the point source. Point pollution sources have definite emission points and are discharged to one point through a pipe. But Nonpoint pollution source (NPS) has uncertain pathway, pollutant load and runoff characteristics unlike point pollution sources, making them difficult to manage. Thus, the Korea government plans to develop and equip facilities that help reduce NPS so as to manage them more easily. But removal efficiency of Best Management Practice (BMPs) is in influenced by rainfall, hydrologic condition like natural phenomenon, so factors of removal efficiency are difficult. Thus there is a need for multilateral research about many factors that affect removal efficiency for removal facility design of proper non-point pollution. In this research, mapping, vegetation coverage and retention time were investigated in the case of factors that affect removal efficiency in grassed swale, a nature-type non-point removal facility. Grassed swale obtained changed of coverage using Braun-Blanquet within swale and retention time was obtained from point that rainfall effluent enters into swale to the time that first outflow starts. Besides, correlation analysis was obtained using pearson correlation analysis method. As a result, it was shown that removal efficiency increases as retention time is longer in grassed swale and that retention time increases as vegetation coverage is higher.

A Study on Development of Management Targets and Evaluation of Target Achievement for Non-point Source Pollution Management in Saemangeum Watershed (새만금 비점오염원 관리지역에서의 목표설정 및 달성도 평가방법론 연구)

  • Kim, Eun-Jung;Park, Bae-Kyung;Kim, Yong-Seok;Rhew, Doug-Hee;Jung, Kwang-Wook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.480-491
    • /
    • 2015
  • In this study, methods using LDC (Load Duration Curve) and watershed model were suggested to develope management targets and evaluate target achievement for non-point source pollution management considering watershed and runoff characteristics and possibility for achievement of target. These methods were applied for Saemangeum watershed which was designated as nonpoint source pollution management area recently. Flow duration interval of 5 to 40% was selected as flow range for management considering runoff characteristics and TP was selected as indicator for management. Management targets were developed based on scenarios for non-point source pollutant reduction of management priority areas using LDC method and HSPF model which was calibrated using 4 years data (2009~2012). In the scenario of LID, road sweeping and 50% reduction in CSOs and untreated sewage at Jeonju A20 and 30% reduction in fertilizer and 50% in livestock NPS at Mankyung C03, Dongjin A14 and KobuA14, management targets for Mangyung bridge, Dongjin bridge, Jeonju stream and Gunpo bridge were developed as TP 0.38, 0.18, 0.64 and 0.16 mg/L respectively. When TP loads at the target stations were assumed to have been reduced by a certain percentage (10%), management targets for those target stations were developed as TP 0.35, 0.17, 0.60 and 0.15 mg/L respectively. The result of this study is expected to be used as reference material for management master plan, implementation plan and implementation assessment for non-point source management area.