• Title/Summary/Keyword: Runoff loads

Search Result 249, Processing Time 0.031 seconds

Characteristics of Pollutant Loading into Streams from Flooded Paddies -On The Special Reference to Total Kjeldahl Nitorgen and Total phosphorous- (농경지로부터의 오염물질 유출부하특성 - 전Kjeldahl 질소 및 전인을 중심으로)

  • 홍성구;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.3
    • /
    • pp.93-102
    • /
    • 1989
  • With an objective to provide basic information for the management and the prediction of eutrophication in lentic water Systems, total amount of Kjeldahl nitrogen(T-N) and phosphorous(T-P) from irrigated water and drained water from flooded paddies were investigated during the rice growing period of 1988. A 29.3 ha paddies near Jungnam-myun, HwaSung-gun, Gyungi Province, Korea was instrumented for measuring runoff and sampling irrigated water and drained water from paddies. The following conclusions may be drawn from the result of this study. 1.During 115 days of investigation, T-N load for paddies was 362.6kg and T-P 63.44kg.These would be converted to 12.4kg T-N/ha and 2.17kg T-P/ha, respectively. 2.The T-N and T-P loadings in different periods showed a significant difference. The 25% of T-N loading was drained soon after fertilization period and 60% was drained during the rainy season from July 5 to July 24. 3.Annual loadings from paddies could be calculated to 30kg T-N/ha/year and 52kg T-P/ha/year considering non-measurement periods. 4.After the rainy season, the nutrient loads from drained water showed much less than those from irrigated water, and it may be suggested that the paddies would act as a stabilization pond. 5.The average concentrations of nutrients at 0.9km downstream from investigated paddies were 2.02(T-N) mg/l and 0.52(T-P) mg/I, which were 1.82(T-N) mg/l and 0.056(T-P)mg/l lower than those of drained water from paddies.

  • PDF

Simulation of 10-day Irrigation Water Quality Using SWAT-QUALKO2 Linkage Model (SWAT-QUALKO2 연계 모형을 이용한 관개기 순별 관개수질 모의)

  • Kim, Ji Hye;Jeong, Han Seok;Kang, Moon Seong;Song, In Hong;Park, Seung Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.53-63
    • /
    • 2012
  • The objectives of this study were to develop a linked watershed-waterbody modeling system and to assess the impacts of indirect wastewater reuse on irrigation water quality. The Osan stream watershed within Gyeonggi-do of South Korea was selected for this study. The linked modeling system was composed of the SWAT (Soil and water assessment tool) and QUALKO2 models. The SWAT model was calibrated and validated using the stream discharge and water quality data from 2010 to 2011. Runoff and non-point source pollutants from each subbasin and stream discharge from 1980 to 2009 were simulated by the SWAT model and applied to the QUALKO2 model. The QUALKO2 model was calibrated and validated under the conditions of low water and normal discharges, respectively. Finally, The 10-day irrigation water quality from April to September was simulated. The statistical measures of coefficient of determination ($R^2$), reliability index (RI), and efficiency index (EI) were used to evaluate the system performance. The $R^2$, RI and EI values ranged from 0.5 to 1.0, 1.03 to 1.92, and -35.03 to 0.95, respectively. The 10-day irrigation water quality showed the concentrations of BOD and coliform exceeded the water quality guidelines for wastewater reuse. The linked modeling system can be a useful tool to estimate non-point source pollutant loads in watershed and to control the water quality of effluent from a wastewater treatment plant and irrigation water in the downstream waterbody.

Estimation of Runoff Unit Area Loads for Nutrients from Forest and Sloping Field using SWAT model in Bonggok Stream Watershed (SWAT모형을 이용한 봉곡천 유역 경사지밭, 산지의 영양염류 배출 원단위 산정)

  • Kim, Ki-Yun;Ryu, Byong-Ro;Lee, Kyu-Seung;Moon, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • 본 연구에서는 2005년부터 2006년까지 충청남도 공주시 반포면에 위치한 봉곡천 유역의 경사지 밭을 포함하고 있는 산지하천에서 유출량, 총인, 총질소를 측정하였고 측정된 자료는 SWAT 모형을 통하여 장기간의 배출부하량 산정을 위해 모형의 보정 및 검정자료로 사용하였다. SWAT 모형의 보정 및 검정결과는 유출량은 일별자료를 이용하여 보정 및 검정을 실시하였다. 그 결과 결정계수 ($R^2$)가 0.80~0.83의 값을 보였으며 일별 T-N, T-P 부하량에 대한 보정 및 검정결과는 결정계수 ($R^2$)가 0.62~0.86의 값을 보였다. 모형의 보정 및 검정을 통해 결정된 최적매개변수를 적용하여 1997년부터 2006년까지 관측된 강우자료로 장기간의 유출량, T-N, T-P 배출부하량에 대한 SWAT 모형 시뮬레이션을 수행하였다. 또한 이를 바탕으로 하여 산지와 밭에 대한 원단위를 산정하였으며, 그 결과 산지에 대한 T-N의 원단위는 3.29 $kg/km^2/day$이었고 T-P에 대한 원단위는 0.15 $kg/km^2/day$로 나타났다. 또한 밭에서의 T-N에 대한 원단위는 11.15 $kg/km^2/day$이었고 T-P에 대한 원단위는 0.70 $kg/km^2/day$로 나타났으며 강우의 시간 및 공간적 변화에 따른 유출량을 고려한 산지와 밭에서의 영양염류 배출부하량을 산정하는데 SWAT모형을 적용하는 것이 타당성이 있는 것으로 판단되었다.

A Study on Removal Efficiency and Applicability of Natural Type Road Non-point Pollutant Reduction Facilities (자연형 도로 비점오염저감시설의 저감효율 및 적용성 연구)

  • Lee, Sang Hyuk;Cho, Hye Jin;Kim, Lee Hyung
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.9-17
    • /
    • 2014
  • PURPOSES : The purpose of this study is to assess removal efficiency of non-point pollutants and applicability for non-point pollutant reduction facilities by conducting the demonstration project operation. METHODS : In order to analyze removal efficiency of non-point pollutants for facilities such as a grassed swale, a small constructed wetland, a free water surface wetland, a horizontal sub-surface flow wetland, and a sand filtration, the field data including specifications of facilities, rainfall, inflow and runoff rainfall effluent etc. was acquired after occurring rainfall events, and the acquired data was analyzed for removal efficiency rate to assess road non-point pollutants facilities using event mean concentration (EMC) and summation of load (SOL) methods. RESULTS : The results of analyzing rainfall effluent, non-point pollutant sources showed that total suspended solid (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), chrome (Cr), zinc (Zn), and lead (Pb) can be removed through non-point pollutant reduction facilities by 60.3% ~ 100%. Especially removal efficiency of TSS, COD and BOD is relatively higher than removal efficiency of other non-point pollutant sources in all kind of non-point pollutant facilities. CONCLUSIONS : Based on the result of this study, even though natural type of non-point pollutant reduction facilities for roads occupy small areas comparing with drainage basin areas, most of non-point pollutant sources would be removed through the facilities.

A Study on Selection Method of Management Watershed for Total Pollution Load Control at Tributary (지류총량관리를 위한 관리유역 선정 방법에 관한 연구)

  • Hwang, Ha Sun;Lee, Sung Jun;Ryu, Jichul;Park, Ji Hyung;Kim, Yong Seok;Ahn, Ki Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.528-536
    • /
    • 2016
  • The purpose of Total Pollution Load Control at Tributary is to obtain maximum improvement effect of water quality through finding the most impaired section of water-body and establishing the proper control measure of pollutant load. This study was implemented to determine the optimal management of reach, period, condition, watershed, and pollution source and propose appropriate reduction practices using the Load duration curve (LDC) and field monitoring data. With the data of measurement, LDC analysis shows that the most impaired condition is reach V (G4~G5), E group (flow exceedance percentile 90~100%) and winter season. For this reason, winter season and low flow condition should be preferentially considered to restore water quality. The result of pollution analysis for the priority reach and period shows that agricultural nonpoint source loads from onion and garlic culture are most polluting. Therefore, it is concluded that agricultural reuse of surface effluent (storm-water runoff with non-point sources) and low impact farming that includes reducing fertilization and controlling the height of drainage outlet are efficient water quality management for this study watershed.

Assessment of water quality variations under non-rainy and rainy conditions by principal component analysis techniques in Lake Doam watershed, Korea

  • Bhattrai, Bal Dev;Kwak, Sungjin;Heo, Woomyung
    • Journal of Ecology and Environment
    • /
    • v.38 no.2
    • /
    • pp.145-156
    • /
    • 2015
  • This study was based on water quality data of the Lake Doam watershed, monitored from 2010 to 2013 at eight different sites with multiple physiochemical parameters. The dataset was divided into two sub-datasets, namely, non-rainy and rainy. Principal component analysis (PCA) and factor analysis (FA) techniques were applied to evaluate seasonal correlations of water quality parameters and extract the most significant parameters influencing stream water quality. The first five principal components identified by PCA techniques explained greater than 80% of the total variance for both datasets. PCA and FA results indicated that total nitrogen, nitrate nitrogen, total phosphorus, and dissolved inorganic phosphorus were the most significant parameters under the non-rainy condition. This indicates that organic and inorganic pollutants loads in the streams can be related to discharges from point sources (domestic discharges) and non-point sources (agriculture, forest) of pollution. During the rainy period, turbidity, suspended solids, nitrate nitrogen, and dissolved inorganic phosphorus were identified as the most significant parameters. Physical parameters, suspended solids, and turbidity, are related to soil erosion and runoff from the basin. Organic and inorganic pollutants during the rainy period can be linked to decayed matters, manure, and inorganic fertilizers used in farming. Thus, the results of this study suggest that principal component analysis techniques are useful for analysis and interpretation of data and identification of pollution factors, which are valuable for understanding seasonal variations in water quality for effective management.

Comparison of Non-Point Pollutant Loads by the Crops in Alpine Fields (고랭지 밭의 작물별 비점오염부하 비교)

  • Choi, Yong-Hun;Won, Chul-Hee;Kim, Tae-Yoo;Yang, Hee-Jeong;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1247-1252
    • /
    • 2010
  • 강원도 평창군 대관령면 횡계리에 위치한 고랭지 밭을 2008년 3월부터 2009년 12월까지 발생한 강우사상에 대하여 모니터링을 실시하여, 경지단위의 밭에서 발생하는 비점오염부하를 측정하고, 작물에 의한 발생량을 비교하였다. 2008년에는 감자를 재배하였고, 2009년에는 무를 재배하였다. 2008년의 시비량은 2009년의 시비량보다 질소 2.1배, 인산 1.9배, 칼륨 2.3배 높게 나타났다. 2008년 총 5회의 유출에 의해 SS 2,908.47 kg/ha/yr, COD 67.95 kg/ha/yr, BOD 50.72 kg/ha/yr, TN 13.29 kg/ha/yr, TP 9.97 kg/ha/yr의 연 오염부하가 발생하였으며, 2009년 총 8회의 유출에 의해 SS 3,908.34 kg/ha/yr, COD 225.04 kg/ha/yr, BOD 156.96 kg/ha/yr, TN 18.88 kg/ha/yr, TP 36.41 kg/ha/yr의 연 오염부하가 발생하였다. 2008년과 2009년의 강우량이 다르기 때문에 연 오염 부하를 유출이 발생한 강우량의 합으로 나누어 비교하였다. 비료사용량이 2008년에 약 2배 많았음에도 불구하고 단위 강우량 당 오염부하에서 TN은 0.031 kg/ha/mm와 0.029 kg/ha/mm로 큰 차이가 나타나지 않았고, COD는 0.16 kg/ha/mm와 0.35 kg/ha/mm, BOD는 0.12 kg/ha/mm와 0.24 kg/ha/mm, TP는 0.023 kg/ha/mm와 0.057 kg/ha/mm로 2009년에 2배 이상 증가하였다. 이는 비료의 사용량보다 작물의 성장에 의한 지표피복효과가 비점오염 저감에 더 효과적 작용할 수 있다는 것을 의미한다. 따라서 고랭지 밭에서 피복율이 높은 작물을 재배하거나 피복재에 의한 지표피복을 실시하면 비점오염의 저감을 위한 최적관리방안으로 활용 될 수 있을 것이다.

  • PDF

Distribution of Inorganic Phosphorus Fractions in Sediments of the South Han River over a Rainy Season

  • Vo, Nguyen Xuan Que;Ji, Yoonhwan;Doan, Tuan Van;Kang, Hojeong
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.229-240
    • /
    • 2014
  • Rain events are extremely important for phosphorus (P) dynamics in rivers since large portions of annual river P loads can be transported in particulate forms during only a few major events. Despite their importance, a precise estimation of P contribution in river sediments after rainy seasons has rarely been reported. This study estimated the longitudinal variation in the concentrations of different inorganic P fractions in bed sediments of the South Han River over a rainy season, through using the sequential extraction method. Non-apatite P was the dominant form, representing more than 60% of total inorganic P (TIP) content in sediments. Although no significant variation of TIP contents was observed, the proportion of bioavailable P in TIP pools decreased after the rainy season. The concentrations of individual inorganic P fractions ($NH_4Cl-P$, $NH_4F-P$, NaOH-P, and $H_2SO_4-P$) were significantly different across sites and after the rainy season (p < 0.05, two-way ANOVA). $NH_4F-P$ and NaOH-P concentrations in sediments increased in a downstream direction. After the rainy season, $NH_4Cl-P$ concentrations in sediments decreased whereas $NH_4F-P$ and $H_2SO_4-P$ concentrations increased. The redistribution of individual P fractions in sediments observed after rainy seasons were possibly due to the changing contribution of various sources of runoff and the variation in flow related particle size. Current estimation of P in bed sediments of the South Han River suggests a lower potential of internal P loading from sediments after the rainy season.

A Study on How to Reduce the Amount of Groundwater Used in the Dry Season and Improve the Water Quality of the Base Runoff (갈수기 지하수 물 사용량 저감 및 기저유출 수질 개선 방안 연구)

  • Kang, Tae-Seong;Yang, Dong-Seok;Yu, Na-Yeong;Shin, Min-Hwan;Lim, Kyoung-Jae;Kim, Jong-Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.27-35
    • /
    • 2022
  • Based on the current status of groundwater usage in the dry season through field surveys, this study tried to suggest countermeasures to reduce groundwater usage and to improve the water quality of baseflow from agricultural fields. For this purposes, basins with water curtain cultivation preceded were targeted where decreases of groundwater due to continuous use of groundwater in spring and winter annually observed. From monitoring groudwater usage of the study watershed, 130,058, 130,105 m3/day of water was pumped in during the water curtain cultivation period (October-February) in the Shindun, Seokwon watershed respectively. And the pilot application of the smart automated sensor-based water curtain cultivation system (smart WC system) developed in this study to reduce groundwater consumption has been conducted. As a result, the efficiency of the smart WC system when threshold temperature is set as 6.3 ℃ was 21.1% compared to conventional cultivation and efficiency increased as threshold temperature gets lower. Lastly, in this study, culvert drainage and Bio-filters were installed and rainfall monitoring was performed 15 times in order to analyze the baseflow securement and pollutant loads behavior. As a result, the test-bed with culvert drainage and Bio-filter installed together generated 61.4% more baseflow (4.974 m3) than the test-bed with only culvert drainage was installed (3.056 m3). However, the total pollutant load of all water quality contents (BOD, COD, T-N, TOC) except for the SS and T-P was found to be greater in the culvert drain and Bio-filter installed than in the culvert drain test-bed.

Assessing climate change response on runoff and T-N loads of rice growing season shift using coupled SWAT-APEX model (SWAT-APEX 연계 모형을 이용한 벼 생육기간 조절을 통한 기후변화 대응 영향 평가)

  • Kim, Dong Hyeon;Jan, Taeil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.200-200
    • /
    • 2020
  • 본 연구에서는 SWAT 모형과 APEX-Paddy 모형의 연계 모델링을 통한 대표 BMP(Best management practice) 적용, 정식시기 및 벼 생육기간을 고려한 시나리오 적용을 통해 농업용수의 관리 및 수질환경 개선 등에 활용할 수 있는 저영향 영농활동을 분석하고자 하였다. 만경강 유역을 대상으로 SWAT 모형을 구축하고 유역 내에 위치한 논 시험포장을 대상으로 강우-유출 및 비점오염원 모니터링 자료를 활용하여 APEX-Paddy 모형을 구축하였다. SWAT 모형과 APEX 모형을 연계하여 유역의 수문, 수질에 대한 정밀한 모델링을 수행하였으며, 이는 저영향 영농활동을 분석하기 위한 필드단위의 정확한 결과를 유역차원에 반영하기 위함이다. 특히, 본 연구에 사용된 APEX-Paddy 모형은 농촌진흥청과 Texas A&M의 공동연구를 통해 개발된 새로운 모형으로서 한국의 논 영농활동 및 담수환경을 반영하여 논에서의 유출 및 비점오염원을 모의할 수 있다. 연계 모형의 적합성 평가를 위해 R2 (Determine of Coefficient), RMSE (Root mean square error), NSE (Nash-sutcliffe efficiency)를 사용하였다. 적합성 평가 지표를 분석한 결과, 유출량은 R2 평균 0.91, RMSE 평균 2.87 mm/day, NSE 평균 0.78로 나타났다. T-N 부하량은 R2 평균 0.74, RMSE 평균 59.3 kg/ha/day, NSE 평균 0.50으로 나타났다. 저영향 영농활동 관리방안을 위한 시나리오로 1) 논의 물꼬높이(BMP) 관리 적용, 2) 벼 생육기간 조절을 고려하여 기온변화에 따른 정식시기, 벼 생육기간 등을 조정하여 적용하였다. 기후변화 시나리오는 10개 GCM 모델의 RCP 8.5 시나리오를 통해 분석하였으며, 유역차원의 미래 영향을 분석한 결과, 물꼬관리 BMP에 따라 담수심이 증가되며, 관개량이 감소하고 유출량 10.7%, T-N 11.2% 저감되는 것을 나타냈으며, 벼 생육기간 조절은 BMP보다 상대적으로 효과가 높진 않았지만, 유출량 1.4%, T-N 3.1%의 저감효과를 나타냈다. 따라서 두 가지의 저영향 영농활동 관리방안은 미래기간의 기후변화에 대응하여 농업용수 및 물관리에 도움이 될 것으로 사료된다. 하지만 본 연구결과는 모델링 결과에 의존한 것이며, 추후 지속적인 연구와 보완이 필요하다.

  • PDF