• Title/Summary/Keyword: Runoff flow

Search Result 873, Processing Time 0.027 seconds

Runoff Analysis due to Moving Storms based on the Basin Shapes (I) - for the Symmetric Basin Shape - (유역형상에 따르는 이동강우의 유출영향분석(I) - 대칭유역형상 -)

  • Han, Kun Yeun;Jeon, Min Woo;Kim, Ji Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.15-25
    • /
    • 2006
  • Using kinematic wave equation, the influence of moving storms to runoff was analysised with a focus on watersheds. Watershed shapes used are the oblong, square and elongated shape, and the distribution types of moving storms used are uniform, advanced and intermediate type. The runoff hydrographs according to the rainfall distribution types were simulated and the characteristics were explored for the storms moving down, up and cross the watershed with various velocity. The shape, peak time and peak runoff of a runoff hydrograph are significantly influenced by spatial and temporal variability in rainfall and watershed shapes. A rain storm moving in the cross direction of channel flow produces a higher peak runoff than in the downstream direction and upstream direction. A peak runoff from a storm moving downstream exceeds that from a storm moving upstream. For storms moving downstream peak time was more delayed than for other storm direction in the case of elongated watershed. The runoff volume and time base of the hydrograph decreased with the increasing storm speed.

Future Runoff Characteristics of Ganwol Estuary Reservoir Watershed Based on SSP Scenarios (SSP 기후변화 시나리오에 따른 간월호 유역의 미래 유출특성 변화)

  • Kim, Sinae;Kim, Donghee;Kim, Seokhyeon;Hwang, Soonho;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.25-35
    • /
    • 2023
  • The estuary reservoir is a major source of agricultural water in Korea; for effective and sustainable water resource management of the estuary reservoir, it is crucial to comprehensively consider various water resource factors, including water supply, flood, and pollutant management, and analyze future runoff changes in consideration of environmental changes such as climate change. The objective of this study is to estimate the impact of future climate change on the runoff characteristics of an estuary reservoir watershed. Climate data on future Shared Socioeconomic Pathway (SSP) scenarios were derived from two Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 6 (CMIP6). The Hydrological Simulation Program-Fortran (HSPF) was used to simulate past and future long-term runoff of the Ganwol estuary reservoir watershed. The findings showed that as the impact of climate change intensified, the average annual runoff in the future period was higher in the order of SSP5, SSP3, SSP1, and SSP2, and the ratio of runoff in July decreased while the ratio of runoff in October increased. Moreover, in terms of river flow regime, the SSP2 scenario was found to be the most advantageous and the SSP3 scenario was the most disadvantageous. The findings of this study can be used as basic data for developing sustainable water resource management plans and can be applied to estuary reservoir models to predict future environmental changes in estuary reservoirs.

Analysis of Hydrologic Geo-Spatial Information Using Runoff-Management Model (유출관리모형을 활용한 수문학적 공간정보 분석)

  • Lee, Sang-Jin;Noh, Joon-Woo;Ahn, Jung-Min;Kim, Joo-Cheol
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.97-104
    • /
    • 2009
  • GIS (Geographic Information System) is very useful in describing basin wide geographic characteristics and hydrologic analysis. This study estimated long term hydrologic variations in the Geum river basin using the SSARR rainfall runoff simulation model to provide reliable hydrologic information associated with rainfall runoff management module. Calibrated various hydrologic information such as soil moisture index, water use, direct and base flow are generated using GIS tools to display spatial hydrologic information in the unit of subbasin of target watershed. In addition, the graphic user interface toolkit designed for data compilation is expected to support efficient basin wide rainfall runoff analysis.

  • PDF

Study on Runoff Characteristics of Nonpoint Sources during Rainfall in Anyangchun Watershed (안양천 유역의 강우시 비점오염원에 따른 유출부하특성에 관한 연구)

  • Hwang, Byung-Gi;Yu, Se-Jin;Cha, Young-Ki
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.3
    • /
    • pp.223-234
    • /
    • 2001
  • In this study, we conducted a survey to examine the runoff characteristics of nonpoint sources, which wash off pollutants from the surface of basin during rainfall and affect water pollution of streams. An Anyangchun basin in the region Ewiwang City was selected as a study site. The basin divided into several subbasins such as Wanggokchun, Ojeonchun, and Anyangchun based on the tributaries, which confluence to the main stream of Anyangchun. Four times of field examination had been carried out between July and August of 2000, and water quality data collected from the surveys had been analysed. The survey includes in-situ flow, DO and PH measurements in the outlet of catchment. Laboratory analysis includes BOD, TN, TP. From the result, pollutant by runoff of nonpoint sources were washed out along with stormwater in the beginning of rainfall, and flowed into streams resulted in stream pollution. In case of BOD, the load from Ojeonchun catchment, most of which included urban areas, took up 50% of the total load from the entire watershed. Thus, by the results, it is clear that runoff load by urban nonpoint sources plays an important role in the control and management of nonpoint sources for the watershed.

  • PDF

Analysis of Sediment Reduction with VFS and Diversion Channel with Enhancements in SWAT Landuse-Subbasin Overland Flow and VFS Modules

  • Park, Youn-Shik;Kim, Jong-Gun;Kim, Nam-Won;Engel, Bernie;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.752-757
    • /
    • 2009
  • In the last decade, many methods such as greet chamber, reservoir, or debris barrier, have been utilized to manage and prevent muddy water problem. The Vegetative Filter Strip (VFS) has been thought to be one of the most effective methods to trap sediment effectively. The VFS are usually installed at the edge of agricultural areas adjacent to stream or drainage ditches, and it has been shown that the VFS effectively removes pollutants transported with upland runoff. But, if the VFS is installed without any scientific analysis of rainfall-runoff characteristics, soil erosion, and sediment analysis, it may not reduce the sediment as much as expected. Although Soil and Water Assessment Tool (SWAT) model has been used worldwide for many hydrologic and Non-Point Source Pollution (NPSP) analysis at a watershed scale. but it has many limitations in simulating the VFS. Because it considers only 'filter strip width' when the model estimates sediment trapping efficiency, and does not consider the routing of sediment with overland flow option which is expected to maximize the sediment trapping efficiency from upper agricultural subbasin to lower spatially-explicit filter strip. Therefore, the SWAT overland flow option between landuse-subbasins with sediment routing capability was enhanced with modifications in SWAT watershed configuration and SWAT engine. The enhanced SWAT can simulate the sediment trapping efficiency of the VFS in the similar way as the desktop VFSMOD-w system does. Also it now can simulate the effects of overland flow from upper subbasin to reflect the increased runoff volume at the receiving subbasin, which is what is occurring at the field if no diversion channel is installed. In this study, the enhanced SWAT model was applied to small watershed located at Jaun-ri in South Korea to simulate diversion channel and spatially-explicit VFS. It was found that approximately sediment can be reduced by 31%, 65%, 68%, with diversion channel, the VFS, and the VFS with diversion channel, respectively.

  • PDF

On-site Evaluation of Rainwater Harvesting Device for Securing Irrigation Water in Small Fields (소규모 밭 관개용수 확보를 위한 소류천 빗물 집수장치의 현장 평가)

  • Choi, Yonghun;Kim, Youngjin;Kim, Minyoung;Jeon, Jonggil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • A rainwater harvesting device was developed for runoff flow harvesting in a small stream or channel and its performance was evaluated in small fields. The rainwater harvesting device has slits on its side of cylindrical volume in 15 cm diameter and 70 cm length, which is designed to increase its water flow harvesting capacity. The maximum collectable water quantity was about 0.0022 ton/sec (130 L/min). Rainwater harvesting device were installed in two locations (P1, P2). P1 is a point for rainfall runoff flow harvesting. P2 is a point for ordinary flow harvesting. During this study, total rainfall depth was 334.5 mm. Runoff of 1,722 ton and 7,984 ton occurred in P1 and P2, and 273 ton and 125 ton were collected by this rainwater harvesting device. Harvesting efficiency was calculated as 15.85 % and 1.57 % in P1 and P2. Clogging of screen filter media in the cylinder due to soil and suspended solids has lowered the harvesting efficiency. However, it was possible to harvest 30 ton/month of rainwater harvesting and it is expected that it will help to solve short-term water shortage.

Effects of Dams and Water Use on Flow Regime Alteration of the Geum River Basin (금강 유역의 댐과 물이용에 의한 유황의 변동특성 분석)

  • Kang, Seong-Kyu;Lee, Dong-Ryul;Moon, Jang-Won;Choi, Si-Jung
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.325-336
    • /
    • 2010
  • This study presents the alteration of flow regime by effects of dams and water use in the Geum River Basin. The surface water use rate and the Impounded Runoff (IR) index were examined to assess the pressure indicators of the flow alteration. We applied the flow duration curve, flow regime coefficient, flood and low-flow frequency analysis as well as Range of Variability Approach (RVA) to investigate the quantitative changes in natural flow regimes. The results indicate that the high flow decreased and low flow increased respectively compared to the natural flow regimes at eight gauging stations. The Geum river is regulated by 139 dams and reservoirs storing 24% of the annual mean discharge and has high surface water use rate of 36%. These indicators are main pressure factors to alter flow regimes.

Impacts on water-cycle by land use change and effects of infiltration trenches in Asan New town (토지이용 변화가 물순환에 미치는 영향과 침투트렌치 설치 효과 분석 - A 신도시 지구를 중심으로 -)

  • Hyun, Kyoung-Hak;Lee, Jung-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.691-701
    • /
    • 2010
  • As the water-cycle is transformed by increasing of the impermeable area in process of urbanization, decentralized rainwater management facilities(infiltration, harvesting and retention facilities) as source control are considered to be a method of restoring water-cycle of urban and reducing runoff. SWMM model was used to analyse the change of water-cycle structure before and after development in A new town watershed. Modified SWMM code was developed to apply infiltration facilities. The modified SWMM was used to analyse the change of water-cycle before and after infiltration trench setup in AJ subcatchment. Changes of the impervious area by development and consequent increase in runoff were analyzed. These analyses were performed by a day rainfall during ten years from 1998 to 2007. According to the results, surface runoff increased from 51.85% to 65.25 %, and total infiltration volume decreased from 34.15 % to 21.08 % in A newtown watershed. If more than 80 infiltration trenches are constructed in AJ subcatchment, the low flow and the drought flow increases by around 47%, 44%, separately. The results of this study, infiltration trench is interpreted to be an effective infiltration facility to restore water-cycle in new town.

Runoff Analysis on the Physically-Based Conceptual Time-Continuous Runoff Model (물리적.개념적 연속 유출모형에 의한 유출해석)

  • 배덕효;조원철
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.193-202
    • /
    • 1995
  • The subjective research attempts to apply a rainfall-runoff model capable of considering time-variation of soil water contents which are highly correlated to the river flows on the qpqyungchang river basin and to evaluate its performance for flow forecasting. The model used in this study is a physically-based conceptual time-continuous model, which is composed of the Sacramento soil moisture accounting model and the nonlinear multiple conceptual reservoirs model. The daily precipitation and evaporation data for 7 years and for 3 years were used for the parameter estimation and the model verification, respectively. As a result, the flows including a significant flood event were well simulated, and the cross-correlation coefficient between observed flows and computed flows for the verification periods was 0.87, but in general computed flows were underestimated for the low-flow periods. Also, the effects of precipitation and soil water content to the river flows were analysed for the flood and the drought.

  • PDF

Effect of Stormwater Runoff on Combined Sewer Overflows in Korea

  • Kim, Lee-Hyung;Kim, Il-Kyu;Lee, Young-Sin;Lim, Kyeong-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.107-113
    • /
    • 2007
  • The Kuem-River, one of the largest rivers in Korea, is the primary water source for more than 4 million people in Kongju city and surrounding area. To study the effect of stormwater runoff to CSOs, twelve monitoring sites were selected in two large cities (City of Kongju and City of Buyeo) near the Kuem-River. Monitoring was reformed by collecting grab samples, measuring flow rates during dry and wet seasons during over two rainy seasons. Generally the flow rate of wastewater in combined sewers was rapidly decreased after 23:00 P.M. and gradually increased from 06:30 A.M. in all sites during the dry season. The concentrations of pollutant increase approximately 5 to 7 fold for TSS and 1.5 to 2.5 fold for BOD during the rainy season. Monitoring and statistical analysis show that the groundwater contributes on sewage volume increase (average 25-45% more) during dry periods and the stormwater runoff contributes approximately 51-72% increase during rainy periods. Generally the concentrations of combined sewage were more polluted during the first flush period than after the first flush during a storm event.