• Title/Summary/Keyword: Runoff Reduction

Search Result 339, Processing Time 0.022 seconds

Hydrologic and Environmental Assessment of an Infiltration Planter for Roof Runoff Use (지붕 빗물이용을 위하여 개발된 침투화분의 환경·수문학적 평가)

  • Moon, So-Yeon;Choi, Ji-Yeon;Hong, Jung-Sun;Yu, Gi-Gyung;Jeon, Je-Chan;Flores, Precious Eureka D.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • Due to urbanization and increase in impervious area, changes in natural water circulation system have become a cause of groundwater recharge reduction, streamflow depletion and other hydrological problems. Therefore, this study developed the infiltration planter techniques applied in an LID facility treating roof stormwater runoff such as, performance of small decentralized retention and infiltration through the reproduction of natural water circulation system and use of landscape for cleaning water. Assessment of an infiltration planter was performed through rainfall monitoring to analyze the water balance and pollutant removal efficiency. Hydrologic assessment of an infiltration planter, showed a delay in time of effluent for roof runoff for about 3 hours and on average, 79% of facilities had a runoff reduction through retention and infiltration. Based on the analysis, pollutant removal efficiency generated in the catchment area showed an average of 97% for the particulate matter, 94% for the organic matter and 86-96% and 92-93% for the nutrients and heavy metals were treated, respectively. Comparative results with other LID facilities were made. For this study, facilities compared the SA/CA to high pollutant removal efficiency for the determination to of the effectiveness of the facility when applied in an urban area.

Performance Assessment and Design Evaluation of Bioretention Planter Boxes Treating Urban Stormwater Runoff (도심지역 강우유출수 처리목적 식물재배화분의 성능 및 설계인자 분석)

  • Guerra, Heidi B.;Park, Kisoo;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.20 no.1
    • /
    • pp.72-79
    • /
    • 2018
  • Two planter boxes were monitored during their initial year of operation to be able to assess their stormwater runoff and pollutant reduction capabilities and investigate on the design factors affecting their performance. One of the planter boxes provided 85-100% runoff volume reduction for rainfall less than 15 mm and rainfall intensities lower than 5 mm/hr. This reduced to 50-64% during higher rainfall intensities and depths of up to 50 mm. Suspended solids, organics, nutrients, and heavy metals were satisfactorily removed at a range of 40-95%. The other planter box, however, did not produce outflow in all the events and allowed total capture of stormwater. The uncertainty regarding the fate of the runoff in that case required an investigation of the planter box's actual drainage and underground conditions which was deemed outside the scope of the study. Nonetheless, several design improvements and retrofits were suggested based on the provisions of current design guidelines to ensure that the hydraulic and water quality goals are achieved without potential damage to nearby structures. Moreover, continuous monitoring data is required to provide more accurate design evaluation and can serve as a guide in the construction of similar facilities in the future.

Study of a Process for Flood Detention Location and Storage Capacity (재해저류지 위치결정과 용량결정 과정에 관한 연구)

  • Oh, Gun-Heung;Park, Ki-Bum;Chang, In-Soo
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.601-609
    • /
    • 2008
  • In this study for the development of area due to the increasing of industry, population and spreading of urbanization is rapidly increasing but about seventy percent of our nation's areas consists of the mountainous districts. In such case, when those areas have the heavy rains break, they are washed away by a fast-flowing stream of a valley and overflowed. Thus it could result on human life and property damage and also the widespread of flood damage in the downstream area. To decrease those damage, the construction of flood control reservoir is necessary. This research was aim to construct the flood runoff models of a mountainous small district and to determine the probability rainfall by analyzing precipitation. The study also examined the effects of location and size of flood control reservoir on flood reduction. The result showed that the construction of detention basin was an effective way to ensure the safety of flood control and multiple detention basin had superior result for reducing amount of runoff in the down stream area than the single detention basin.

Rainwater Infiltration Characteristics in the Unsaturated Soil : Comparison of Finite Element Model with Experimental Results (불포화 토양에서 빗물의 침투특성 : 유한요소 모델과 실험결과 비교)

  • Yoo, Kun-Sun;Kim, Sang-Rae;Kim, Tschung-Il;Yoon, Hyun-Sik;Han, Moo-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.27-33
    • /
    • 2011
  • Infiltration plays an important role in the urban water cycle. Infiltration has a potential to contribute to groundwater recharge in addition to runoff reduction. However, infiltration in urban areas has been considered only as a means of runoff reduction. Conventional design methods for infiltration facilities assume soils to be fully-saturated for the sake of simplicity. The amount of groundwater recharge can not be estimated properly with this scheme. Hence, the characteristics of the unsaturated soil condition need to be considered. The finite element model using SEEP/W to estimate infiltration under the unsaturated condition is presented. Infiltration tests for Joomonjin sand are performed and the infiltration behavior of Joomoonjin sand under the unsaturated condition is measured experimentally to verify the validity of the finite element model. The results from comparing infiltrated volume between the saturated and the unsaturated conditions under the same soil and rainfall conditions show that the infiltrated volume in the unsaturated condition is two times bigger than that in the saturated condition.

The Improvement on the Empirical Formula of Stormwater Captured Ratio for Water Quality Volume Based Non-Point Pollutants Water Quality Control Basins (WQV 기반 비점오염저감시설의 강우유출수 처리비 경험공식의 개선)

  • Choi, Daegyu;Park, Moo Jong;Park, Bae Kyung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.87-94
    • /
    • 2014
  • According to the technical guideline of water pollutant load management, the rainfall captured ratio which can be estimated by the empirical formula is an important element to estimate reduction loads of non-point pollutants water quality control basin. In this study, the rainfall captured ratio is altered to stormwater captured ratio considering its meaning in the technical guideline of water pollutant load management, and the new empircal formula of stormwater captured ratio is suggested. In order to do this, we calculate stormwater captured ratio by using the hourly rainfall data of seven urban weather stations (Busan, Daegu, Daejeon, Gangreung, Seoul, Gwangju, and Jeju) for 43 years. The regression coefficients of the existed empirical formula cannot reflect the catchment properties at all, because they are fixed values regardless of regions. However the empirical formula of stormwater captured ratio has flexible regression coefficients by runoff coefficient(C), so it is allowed to consider the characteristics of runoff in catchment. It is expected that reduction loads of storage based water quality control basin can be more reasonably estimated than before.

Soil Erosion Reduction Plan for Watershed with Sloping Fields of Highland Agriculture by Using GEOWEPP Model (GEOWEPP 모형을 이용한 고랭지 경사지밭 소유역의 토양유실 저감방안)

  • Moon, Jong-Pil;Kim, Tai-Cheol;Lee, Sung-Hyoun;Kwon, Jin-Kyung;Lee, Su-Jang;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.135-144
    • /
    • 2010
  • This study was performed to suggest a soil loss reduction skill through estimating soil erosion from a small watershed including each type of sloping agriland by using GEOWEPP model. Experimental watershed at Gangwon province was selected for very typical sloping fields of highland agriculture in Alpine area. Runoff discharge and sediment load, hourly rainfall amount occurred during storm event were gauged, and weather data were obtained from Daegwallyeong meteorological station. The results of GEOWEPP model estimation showed that relative error values for total runoff discharge and sediment load were 3 %, -14.5 % respectively. Based on the result, soil erosion and waterway path map for each hillslope were made to select target hillslope. Several hillslopes of severe soil erosion were analyezed and then the optimal vegetative filter strip construction width and waterway path to plant grass were decided by using GEOWEPP Model.

A Plot Scale Experiment to Analysis the NPS Reduction by Silt Fence and Vegetated Ridge for Non-Irrigated Cropland (실트펜스와 식생밭두렁 적용을 통한 밭 비점오염 저감효과 분석을 위한 포장실험 연구)

  • Kim, Sung-Jae;Park, Tae-Yang;Kim, Sung-Min;Jang, Jeong-Ryeol;Kim, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.19-27
    • /
    • 2012
  • The objective of this study was to test the pollutant reduction effect by the silt fence and vegetated ridge through field monitoring. The experiment plots were established with two replication and three treatments. Each plot was designed with 5 m width, 22 m length, and 3 % slope. Flumes with the floating type stage gages were installed at the outlet of each plot to monitor the runoff. For a rainfall monitoring, tipping bucket rain gage was installed within the experiment site. Cultivated crops were spring daikon and autumn chinese cabbage. Analysis of variance (ANOVA) indicated that the water quality concentration from three experiment plots were not significantly different in 5 % of significant level. The monitoring results showed that the average pollution loads reduced by silt fence compared to control were SS 75.33 %, TN 40.87 %, TP 56.58 %, BOD 52.12 %, COD 36.07 %, TOC 34.99 %; by vegetated ridge compard to control were SS 65.27 %, TN 81.80 %, TP 54.26 %, BOD 67.09 %, COD 46.55 %, TOC 43.30 %. Analysis of Spearman's rank correlation coefficient showed that BOD-SS and SS-Turbidity were highly related at the silt fence and vegetated ridge plots. In all plots, SS-Turbidity and TP-TN relations were relatively high. The monitoring results showed that the silt fence and vegetated ridge were effect method to reduce the pollutant loads from the field runoff. Long-term monitoring is required to obtain more quantitative reduction effect for diverse crops and to increase the reliability of results.

Estimation of non-point pollution reduction effect of Haean Catchment by application of Nature-based Solutions (자연기반해법 적용에 따른 강원도 양구군 해안면의 비점오염 저감 효과 추정)

  • Lee, Ji-Woo;Park, Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.3
    • /
    • pp.47-62
    • /
    • 2022
  • The Ministry of Environment has been working to reduce the impact on biodiversity, ecosystems, and social costs caused by soil runoff from highland Agricultural fields by setting up non-point pollution source management districts. To reduce soil loss, runoff path reduction technology has been applied, but it has been less cost effective. In addition, non-point pollution sources cause environmental conflicts in downstream areas, and recently highland Agricultural fields are becoming vulnerable to climate change. The Ministry of Environment is promoting the optimal management plan in earnest to convert arable land into forests and grasslands, but since non-point pollution is not a simple environmental problem, it is necessary to approach it from the aspect of NbS(Nature-Based Solution). In this study, a scenario for applying the nature-based solution was established for three subwatersheds west of Haean-myeon, Yanggu-gun, Gangwon-do. The soil loss distribution was spatialized through GeoWEPP and the amount of soil loss was compared for the non-point pollution reduction effect of mixed forests and grasslands. When cultivated land with a slope of 20% or more and ginseng fields were restored to perennial grasslands and mixed forests, non-point pollution reduction effects of about 32% and 29.000 tons compared to the current land use were shown. Also, it was confirmed that mixed forest rather than perennial grassland is an effective nature-based solution to reduce non-point pollution.

The NPS Analysis and CSO Management Based on SWMM for Oncheon Basin (SWMM 모형을 이용한 비점오염 분석 및 CSO 관리방안 연구 - 부산시 온천천 유역 대상 -)

  • Shin, Hyun Suk;Son, Jeong Hwa;Jang, Jong Kyung;Shon, Tae Seok;Kang, Dookee;Cho, Dukjoon
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.268-280
    • /
    • 2009
  • Oncheon basin which are located in Busan is divided into 43 basin on the basis of main pipe, constructed with Storm Water Management Model (SWMM). Occurrence situation for Outflow and pollutant loads by long-term continuous rainfall is examined for treatment district and river analysis point of Oncheon basin and a reduction vs effectiveness table for effective CSOs managements is made for each of treatment districts according to each of managements. In case that treatment equipment is located at the discharge point of CSO, treatment efficiency is analysed. It is supposed that treatment equipment have an efficiency on the basis of a concentration and runoff discharge over a critical flow is discharged with it untreated and treating runoff discharge with treatment equipment at each of runoff discharge points and treating it gathered at sewage treatment plant (STP) through trunk sewer is compared for a relative treatment efficiency.

Nutrients Transport Pathway for Watershed Impact Analysis of Livestock Wastes and its Resources (양돈 퇴, 액비의 수질환경 영향분석을 위한 영양물질 이동경로 연구)

  • Oa, Seong-Wook
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.465-470
    • /
    • 2011
  • Liquid fertilizer and composted cattle manure were applied to an agricultural land. This study was conducted to find the pathway of the nutrients transport. Nitrogen concentration was decreased by the repeatable precipitation in surface runoff, but the nitrate concentration in ground water was gradually increased by biological metabolism, especially with pig liquid fertilizer. Phosphorus was mostly adsorbed into the soil, and its reduction was affected by the soil drain by surface runoff in the summer. Averaged adsorption capacity of the phosphorus via Jar-test was determined as 21.5 mg P/kg of soil.