• Title/Summary/Keyword: Runoff Reduction

Search Result 339, Processing Time 0.034 seconds

Characteristics of Non-Point Pollutant Runoff in Highland Field Fields through Long-term Monitoring (장기 모니터링을 통한 고랭지 밭 지역의 비점오염물질 유출특성)

  • Lee, Su In;Shin, Jae Young;Shin, Min Hwan;Ju, So-Hui;Seo, Ji Yeon;Park, Woon Ji;Lee, Jae Young;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.85-96
    • /
    • 2017
  • In this research, I performed rainfall monitoring by selecting the spot which can represent high altitude cool farm region in recent 3 years, and tried to understand the characteristic of outflow of non-point pollutants coming from high altitude cool farm region. As a result, it was shown that reducing rainfall runoff in highland farm area can reduce non-point pollution load and should consider priority to reduce runoff through management resources when selecting abatement method. Additionally, it is judged that reduction method related to base run-off should be selected by performing research on material motion of TN.

Comparison of NPS Reduction at Yongsan Area Considering Spatio-Temporal Chnages in CN (CN의 시공간적 변화를 고려한 용산 물순환 환경도시계획의 비점오염물질 저감효과 비교)

  • Choi, Jae-Wan;Lee, Sung-Joon;Ryu, Ji-Chul;Shin, Dong-Seok;Lim, Kyoung-Jae
    • Journal of Environmental Science International
    • /
    • v.21 no.10
    • /
    • pp.1203-1212
    • /
    • 2012
  • Yongsan ward is located at central place connecting south and north ecology axis of seoul. Various environment-friendly Yongsan development could pose positive effects on NPS(non pollutant source) pollutant reductions and water quality improvement at Han-rive because BOD, T-N, and T-P NPS discharges took 90% of total pollutant from this area. In this study, direct runoff and NPS pollutant loads were evaluated before and after development using spatio-tamporal change in CN(curve number) and EMC(event mean concentration) data. It was found that direct runoff value is $23,584,724m^3$, and BOD, T-N and T-P loads are 104,456 kg/year, 111,483 kg/year and 7,500 kg/year under pre-development condition, respectively. Annual runoff, BOD, T-N and T-P reducing rate were 12.9%, 33.3%, 35.6% and 40.7% under integrated post-development condition, respectively. Based on the results obtained in this study, environment-friendly urban development could be achieved at Yongsan area.

Constructed Wetland Design Method to Treat Agricultural Drainage from Tidal Reclaimed Paddy Areas (간척지 논 농업배수 처리에 적합한 인공습지 설계 기법)

  • Jang, Jeong-Ryeol;Shin, Yu-Ri;Jung, Ji-Yeon;Choi, Kang-Won
    • KCID journal
    • /
    • v.18 no.1
    • /
    • pp.4-17
    • /
    • 2011
  • The standard design methodology was suggested to construct wetland system for reducing non-point source pollution from Saemangeum reclaimed paddy land. To set for the design flow and concentrations, runoff and water quality survey were conducted during the irrigation period in 2008 at Gyehwa reclaimed paddy land located at near Saemangeum lake. It is rational that 1ha is the optimum constructed wetland size. To meet this size, the moderate drainage area of reclaimed paddy field was 50ha under the conditions that rainfall is 30mm, average runoff coefficient is 0.83, and runoff capture ratio is 0.6. At these condition, the runoff volume from 50ha was 10,520 $m^3/d$ including base flow during irrigation period. To select the optimum wetland system, several case studies were conducted by focusing on the tidal reclaimed land areas having wetland systems in Seokmun. Pond-Wetland system was selected as the standard model because of showing the highest reduction efficiency. Single variable regression equation were delivered to estimate effluent water concentrations from the designed wetland by using long-term monitoring data from the Seokmun experiment site. The effluent concentration from the designed wetland using these equation were showed moderately range.

  • PDF

The Impact of Climate Change on the Trends of Precipitation Effectiveness Ratio and Runoff Data in South Korea (기후변화에 따른 우리나라 강수효율 및 유출량의 변화특성 분석)

  • Kim, Jong-Pil;Kim, Gwang-Seob
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.8
    • /
    • pp.683-694
    • /
    • 2011
  • To analyze the regional impact of air temperature increase and precipitation variation on water resources, the variability of precipitation-effectiveness (P-E) ratio which is estimated using precipitation and air temperature data of 59 weather stations operated by the Korean Meteorological Administration (KMA) during 1973~2009 was analyzed. Also runoff data resulting from the Precipitation-Runoff Modelling System (PRMS) modelling were analyzed during 1966~2007. The overall spatio-temporal variability of P-E ratio and runoff data in South Korea is corresponding to the variability of precipitation amount. However some region shows that the P-E ratio decreases even though the trend of precipitation amount increases which may be caused by the air temperature increase. Runoff trend is similar to that of P-E ratio. Precipitation and P-E ratio have decreased all seasons except summer season and it means the reduction of available water resources during those seasons. These variability should be reflected in the spring, fall, and winter water supply strategy.

Analysis of Rainfall-Runoff Characteristics on Impervious Cover Changes using SWMM in an Urbanized Watershed (SWMM을 이용한 도시화유역 불투수율 변화에 따른 강우유출특성 분석)

  • Oh, Dong Geun;Chung, Se Woong;Ryu, In Gu;Kang, Moon Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.61-70
    • /
    • 2010
  • The increase of impervious cover (IC) in a watershed is known as an important factor causing alteration of water cycle, deterioration of water quality and biological communities of urban streams. The study objective was to assess the impact of IC changes on the surface runoff characteristics of Kap Stream basin located in Geum river basin (Korea) using the Storm Water Management Model (SWMM). SWMM was calibrated and verified using the flow data observed at outlet of the watershed with 8 days interval in 2007 and 2008. According to the analysis of Landsat satellite imagery data every 5 years from 1975 to 2000, the IC of the watershed has linearly increased from 4.9% to 10.5% during last 25 years. The validated model was applied to simulate the runoff flow rates from the watershed with different IC rates every five years using the climate forcing data of 2007 and 2008. The simulation results indicated that the increase of IC area in the watershed has resulted in the increase of peak runoff and reduction of travel time during flood events. The flood flow ($Q_{95}$) and normal flow ($Q_{180}$) rates of Kap Stream increased with the IC rate. However, the low flow ($Q_{275}$) and drought flow ($Q_{355}$) rates showed no significant difference. Thus the subsurface flow simulation algorithm of the model needs to be revisited for better assessment of the impact of impervious cover on the long-term runoff process.

A Comparative Study Between High and Low Infiltration Soils as Filter Media in Low Impact Development Structures

  • Guerra, Heidi B.;Geronimo, Franz Kevin;Reyes, Nash Jett;Jeon, Minsu;Choi, Hyeseon;Kim, Youngchul;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.130-130
    • /
    • 2021
  • The increasing effect of urbanization has been more apparent through flooding and downstream water quality especially from heavy rainfalls. In response, stormwater runoff management solutions have focused on runoff volume reduction and treatment through infiltration. However, there are areas with low infiltration soils or are experiencing more dry days and even drought. In this study, a lab-scale infiltration system was used to compare the applicability of two types of soil as base layer in gravel-filled infiltration systems with emphasis on runoff capture and suspended solids removal. The two types of soils used were sandy soil representing a high infiltration system and clayey soil representing a low infiltration system. Findings showed that infiltration rates increased with the water depth above the gravel-soil interface indicating that the available depth for water storage affects this parameter. Runoff capture in the high infiltration system is more affected by rainfall depth and inflow rates as compared to that in the low infiltration system. Based on runoff capture and pollutant removal analysis, a media depth of at least 0.4 m for high infiltration systems and 1 m for low infiltration systems is required to capture and treat a 10-mm rainfall in Korea. A maximum infiltration rate of 200 mm/h was also found to be ideal to provide enough retention time for pollutant removal. Moreover, it was revealed that low infiltration systems are more susceptible to horizontal flows and that the length of the structure may be more critical that the depth in this condition.

  • PDF

Transport of nonpoint source pollutants and stormwater runoff in a hybrid rain garden system (하이브리드 빗물정원 시스템에서의 비점오염물질 및 강우유출수 이송 특성)

  • Flores, Precious Eureka D.;Maniquiz-Redillas, Marla C.;Geronimo, Franz Kevin F.;Alihan, Jawara Christian P.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.481-487
    • /
    • 2016
  • In this research, a pilot scale hybrid rain garden system was developed in order to investigate the efficiency in the different components of the hybrid rain garden system and at the same time evaluate the initial efficiency of the system in treating urban stormwater runoff prior to its actual use in the field. Experimental runs were conducted using synthetic runoff having target concentrations similar to that of the typical runoff characteristics found in different countries and in Korea. With the employment of the hybrid rain garden system, hydrologic improvement was observed as the system demonstrates an approximately 95% reduction in the influent runoff volume with 80% retained in the system, and 15% recharged to groundwater. The reduction was contributed by the retention capabilities of ST and infiltration capabilities in PB and IT. With the combined mechanisms such as filtration-infiltration, biological uptake from plants and soil and phytoremediation that are incorporated in PB and IT, the system effectively reduces the amount of pollutant concentration wherein the initial mean removal efficiency for TSS is 87%, while an approximate mean removal efficiency of 76%, 46% and 56% was observed in terms of organics, nutrients and heavy metal, respectively. With these findings, the research helps in the further improvement, innovation and optimization of rain garden systems and other facilities as well.

A Plot Scale Experiment to Assess the NPS Reduction of Sediment Trap for Non-irrigated Cropland (침사구의 밭 비점오염 저감효과 평가를 위한 포장실험 연구)

  • Park, Tae-Yang;Kim, Sung-Jae;Jang, Jeong-Ryeol;Choi, Kang-Won;Kim, Sang-Min
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.97-103
    • /
    • 2011
  • The purpose of this study was to analyze the pollutant reduction effect for non-irrigated crop land by nonpoint source pollution control. For a field scale monitoring, 6 plots (5m width and 22m length) and 3 sediment traps were installed. At the outlet of each plot, the stage gauges were installed for runoff monitoring. For a rainfall monitoring, tipping bucket rain gage was installed within the experiment site. Through the artificial irrigation, runoff from the plots were monitored. The SS, TOC, T-N, T-P, COD, NTU of sampled water were analyzed by standard methods. The SS, TOC, T-N, T-P, COD, NTU concentration of initial runoff were 15.00, 1.54, 5.27, 0.07, 4.72, 0.45mg/L, respectively. Four hours later than the initial runoff, the concentration was changed to 1.00, 0.94, 4.06, 0.01, 0.60, 0.33 mg/L, respectively. As a result of artificial irrigation, three out of four sediment traps were filled with runoff water from the experimental plots. One sediment trap was not filled with runoff water because the artificial irrigation was not supplied for two experimental plots. The stage of sediment traps were gradually lowered. However, the water quality didn't showed a decrease trend as the stage went down because the suspended solid was not equally collected during the water sampling.

An Analysis of the Outflow reduction effect of Bio-retention in Small watershed during Short-term rainfall (단기 강우 시 소규모유역에서 생태저류지의 유출 저감효과 분석)

  • Cheon, Jong-hyeon;Kim, Jae-moon;Jang, Young-su;Shin, Hyun-suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.434-442
    • /
    • 2019
  • Low Impact Development(LID) techniques has been attracting attention as a countermeasure to solve frequent flood damage in urban areas. LID is a techniques for returning to the natural hydrological cycle system by infiltrating the runoff from the impervious surface into the soil. The Bio-retention, one of the LID element technology has outflow reduction effect by reserving and infiltrating storm water runoff from watersheds. Recently, a number of studies have been carried out as interest in the reduction of storm water runoff and non-point pollutants in Bio-retention has increased. However, quantitative analysis on the outflow reduction of Bio-retention applied to small watershed is insufficient. In this study, Bio-retention model was constructed in a small watershed using K-LIDM which is capable of hydrologic analysis. When the storage capacity was increased or dividing the Bio-retention and watershed, the outflow reduction effect was 20% according to the storage capacity increase and 5~15% in the distributed Bio-retention system. The results of this analysis will be used as the basic data of future Bio-retention research related to watershed characteristics, vegetation type and soil condition.

Estimation of Application Cost and Utilization of Turf Grass VFS for Reduction of Uplands NPS Pollution (밭 비점오염저감을 위한 잔디초생대 적용 비용 및 활용성 평가)

  • Lee, Seul-Gi;Jang, Jeong-Ryeol;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.75-83
    • /
    • 2015
  • This study was aimed to estimate the total application cost and utilization of Turf grass VFS application through the field experiment. The experimental plots were constructed in an upland field of Iksan city within the Saemangeum watershed. Turf grass was transplanted at the down-slope edge of the pollution source area in each of the treated plots. Three rainfall events were monitored during the experiment period, and the rainfall-runoff relationships and NPS pollution reduction effects of the VFS systems were assessed. As results, the reduction ratio of runoff volume ranged 14.1~64.0 %, while the NPS pollution reduction ratio ranged 9.8~73.9 % for SS, 24.0~84.2 % for T-N, 31.6~80.9 % for T-P respectively. The total cost of VFS application was estimated by considering purchase cost of Turf grass sods and construction and maintenance costs of VFS system as well as the loss caused by giving up crop cultivation for the area needed to construct the VFS. The total cost of the VFS was estimated to be approximately \3,379,000/ha/year for the first year of application, and this cost could be decreased to \1,899,000/ha/year from the second year as the construction cost of VFS could no longer need to be counted afterwards. Apart from the NPS pollution reduction effects, the possible utilization of VFS was examined by detaching Turf grass within 40 % of VFS area for sale during spring time when the VFS systems fully covered. The benefit of selling the detached Turf grass sods was estimated as \1,260,000/ha/year, and also found that the VFS area successfully recovered by the time of the summer period. This benefit could attract farmers to adopt the VFS technique to manage agricultural NPS pollution.