• Title/Summary/Keyword: Runner speed

Search Result 63, Processing Time 0.027 seconds

Development of High Precision Fastening torque performance Nut-runner System (고정밀 체결토크 성능 너트런너 시스템 개발)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.35-42
    • /
    • 2019
  • Nut fasteners that require ultra-precise control are required in the overall manufacturing industry including electronic products that are currently developing with the automobile industry. Important performance factors when tightening nuts include loosening due to insufficient fastening force, breakage due to excessive fastening, Tightening torque and angle are required to maintain and improve the assembling quality and ensure the life of the product. Nut fasteners, which are now marketed under the name Nut Runner, require high torque and precision torque control, precision angle control, and high speed operation for increased production, and are required for sophisticated torque control dedicated to high output BLDC motors and nut fasteners. It is demanded to develop a high-precision torque control driver and a high-speed, low-speed, high-response precision speed control system, but it does not satisfy the high precision, high torque and high speed operation characteristics required by customers. Therefore, in this paper, we propose a control technique of BLDC motor variable speed control and nut runner based on vector control and torque control based on coordinate transformation of d axis and q axis that can realize low vibration and low noise even at accurate tightening torque and high speed rotation. The performance results were analyzed to confirm that the proposed control satisfies the nut runner performance. In addition, it is confirmed that the pattern is programmed by One-Stage operation clamping method and it is tightened to the target torque exactly after 10,000 [rpm] high speed operation. The problem of tightening torque detection by torque ripple is also solved by using disturbance observer Respectively.

Perfomance analysis of variable runner according to materials rheological characteristics in family mold (패밀리금형에서의 수지 유변학적 특성에 따른 가변러너의 성능 분석)

  • Choi, Kwon-Il;Park, Hyung-Pil;Cha, Baek-Soon;Lee, Byung-Ok;Gu, Bon-Heung
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.23-27
    • /
    • 2008
  • It is well known that the family-mold has an advantage to reduce the cost for production and mold. However, defects are frequently occurred by over packing the smaller volume cavity during molding, especially when the family-mold has a volumetric difference between two cavities. In this study, the cavity-filling imbalance was confirmed by the temperature and the pressure sensors, and a variable-runner system was developed for balancing the cavity-filling. Experiments of balancing the cavity filling was carried out in the family-mold with the variable-runner system, and balancing the cavity-filling was confirmed by changing the cross-sectional area of a runner in the variable-runner system with the temperature and pressure sensors. The influence of the injection speed to the balancing-capability of the variable-runner system was also examined in the experiment.

  • PDF

Effects of processing Factors on Filling Imbalances in Multi-cavity Injection Mold. (다수 캐비티 사출금형에서 성형 인자가 충전 불균형에 미치는 영향)

  • Kang C. M.;Jeong Y. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.54-57
    • /
    • 2004
  • Almost all injection molds have multi-cavity runner for mass production, which are designed with geometrically balanced runner system in order to minimize filling imbalance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalances have sometimes been observed. These filling imbalances have historically been considered as result of uneven mold temperature and mold deflection, but it actually results from non-symmetrically shear, pressure, temperature distribution within melt material as it flows through the runner system. Filling imbalance could be decreased by modifying processing conditions that are related to shear, pressure, temperature such as injection rate, mold temperature, injection pressure, melt temperature. In this study, a series of experiment was conducted using Taguchi method to determine which processing condition influence as the primary cause of filling imbalance in geometrically balanced runner system. As a result of experiments, this paper could present an optimal processing condition to minimize variable that brings about filling imbalance geometrically balanced runner system

  • PDF

Filling Imbalance in Injection Mold with Branch Type Runner System (나뭇가지형 러너시스템을 갖는 사출금형에서의 충전 불균형)

  • Han, Dong-Yeop;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.45-50
    • /
    • 2007
  • Recently, the study for filling imbalance in thermoplastic polymer has gradually been increased. However, it is hard to find the researches for filling imbalance of thermoplastic elastomer(TPE). The experiment of filling imbalance was conducted for thermoplastic vulcanize(TPV) and PP, ABS polymers in the mold with un-geometrically balanced runner system(Branch Type Runner System). In this experiment, the effects of the melt temperature, injection pressure and injection speed on the filling imbalance were investigated.

  • PDF

Experimental Study on the Performance of a Two-Stage Vortex Turbine with a Free Water Surface (자유수면을 갖는 2단 와류 수차의 성능에 관한 실험적 연구)

  • Jong-Woo Kim;In-Ho Choi;Gi-Soo Chung
    • Journal of Wetlands Research
    • /
    • v.26 no.3
    • /
    • pp.236-244
    • /
    • 2024
  • This research was conducted to determine the performance of a two-stage vortex turbine with a free water surface. The performance of the two-stage runner was studied by varying the flow rate and the position of the runner in the cylindrical vortex chamber. The experimental results showed that the performance parameters such as torque, voltage, current, and rotational speed increased with increasing flow rate. The runner depth ratio has a significant impact on the performance of the two-stage vortex turbine. The highest power generated by the two-stage runner occurred in the range of 0.054 to 0.162 runner depth ratio near the orifice. The power output of the two-stage runner was higher than that of the single runner due to more vortex and blade contact area in the flow range of 7.2 to 7.7 L/s.

Runner Design and Internal Flow Characteristics Analysis for an Ns=200 Francis Hydro Turbine Model

  • Hwang, Yeong-Cheol;Chen, Zhenmu;Choi, Young-Do;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.8
    • /
    • pp.698-703
    • /
    • 2016
  • Francis hydro turbines have been most widely used throughout the world because of their wide range of head and flow rate applications. In most applications, they are used for high heads and flow rates. Currently, Korea is developing technology for Francis hydro turbine design and manufacture. In order to understand the internal details of Francis hydro turbines further, a new Francis turbine model runner is designed and model internal flow characteristics are investigated. The specific speed of the Francis hydro turbine model runner is $Ns=200m-kW-min^{-1}$. The runner blade is designed successfully according to the port area and one-dimensional loss analysis. The best efficiency point of the Francis hydro turbine model achieves 90% at the design condition. CFD analysis yields a hill chart of the Francis hydro turbine model for use in predicting performance.

A Novel Runner Design for Flow Balance of Cavities in Multi-Cavity Injection Molding (다수 빼기 사출성형에서 캐비티간 충전균형을 위한 새로운 런너의 설계)

  • Park, Seo-Ri;Kim, Ji-Hyun;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.561-568
    • /
    • 2009
  • Small injection molded articles are generally molded by multi-cavity injection molding. The most important thing in multi-cavity molding is flow imbalance among the cavities because it affects the physical property and the quality of products. The cavity filling balance can be achieved by flow balance in the runner through the thermal balance. In this study, novel screw type runner or helical type runner has been developed for the flow balance in the runner and performed experiment and computer simulation. Flow balance has been observed using various screw type runners for several resins such as amorphous and crystalline polymers including low and high viscosities grades. Flow balance experiments have been performed for various injection speeds since the flow balance can be affected by injection speed among the injection conditions. Experimental results have been compared with computational results and they showed good agreement. The cavity filling balance can be achieved by the screw runner where the temperature distribution is uniform through the circulation flow along the screw channel in the screw runner. It has been verified that the novel screw runner is very effective device in flow balance in the multi-cavity injection molding. cavity filling imbalance, multi-cavity injection molding, runner design, screw runner, thermal balance.

A Study on the Filling Imbalance in a Geometrically Balanced Injection Mold (기하학적 균형을 갖춘 금형에서 발생하는 성형품의 충전 불균형에 관한 연구)

  • 구양;김병탁;정영득;한성렬;한규택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.931-937
    • /
    • 2004
  • Simultaneous filling is a goal in plastic injection mold that has multi cavities. The moldings which have not been filled at the same time have undesired faults such as dimension inaccuracy, residual stress, law mechanical strength, etc. The best way to simultaneous fill is to be injected in a geometrically balanced runner system. In a general processing, however, in balanced runner system mold, filling imbalance would be observed in cavities. These phenomena result from molten polymer's characteristics and circumstances in balanced runner. In this study, the degree of filling imbalance (DFI) was defined for showing rate of filling imbalance in geometrically balanced injection mold that has 8 cavities. Before the main experiment, an injection molding simulation was conducted to know a pattern of filling imbalance with Moldflow software. There were somewhat differences between results of experiment and simulation about the filling imbalance. The reason for the difference was that the software have not concerned about a situation in a real flow channel. It was also investigated how the injection speed affected on filling imbalance in the experiment.

Investigation of the Filling Unbalance and Dimensional Variations in Multi-Cavity Injection Molded Parts (다수 캐비티의 사출성형품에서 충전의 불균형과 성형품 치수 편차의 교찰)

  • Kang, Min-A;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.501-508
    • /
    • 2008
  • Small injection molded articles such as lens and mobile product parts are usually molded in multi-cavity mold. The problem occurring in multi-cavity molding is flow unbalance among the cavities. The flow unbalance affects the dimensions and physical properties of molded articles. First of all, the origin of flow unbalance is geometrical unbalance of the delivery system. However, even the geometry of the delivery system is well balanced, cavity unbalance occurs. This comes from the temperature distributions in the cross-section of runner. Temperature distribution depends upon injection speed because heat generation near runner wall is high at high injection speed. Among the operational conditions, injection speed is the most significant process variable affecting the filling unbalances in multi-cavity injection molding. In this study, experimental study of flow unbalance has been conducted for various injection speeds and materials. Also, the filling unbalances were compared with CAE results. The dimensions and weights of multi-cavity molded parts were examined. The results showed that the filling unbalances vary according to the injection speeds and resins. Subsequently, the unbalanced filling and pressure distribution in the multi-cavity affect the dimensions and physical states of molded parts.

Filling Imbalance of Elastomer TPVs in Injection Mold with Multi-Cavity (다수캐비티 사출금형에서 엘라스토머 TPV의 충전 불균형)

  • Han, Dong-Yeop;Kwon, Yun-Suk;No, Byeong-Su;Jeong, Yeong-Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.41-46
    • /
    • 2007
  • Recently, the study for filling imbalance in thermoplastic polymer has gradually been increased. However, it is hard to find the researches for filling imbalance of thermoplastic elastomer(TPE). The experiment of filling imbalance was conducted for the three kinds of thermoplastic vulcanizes(TPVs) in the mold with geometrically balanced runner system. In this experiment, the effects of the melt temperature and injection speed on the filling imbalance were investigated. To solve the filling imbalance, Runner Core pin(RC pin) in the experimental mold was adopted and it's effects was tested. In this paper, we present that the insert length of RC pin is dependent to each polymers for optimal filling balance.