• 제목/요약/키워드: Runner shape

검색결과 54건 처리시간 0.025초

에어 포일 스러스트 베어링의 탑포일 경사면 형상이 유동특성에 미치는 영향에 대한 수치해석 연구 (The Effects of Inclined Foil Shape on Flow Characteristics in Air Foil Thrust Bearing Using CFD)

  • 백건웅;주원구;문형욱;황성현;정성윤;박정구
    • Tribology and Lubricants
    • /
    • 제37권4호
    • /
    • pp.117-124
    • /
    • 2021
  • In this study, we perform a 3D CFD conjugate analysis according to the shape of the foil ramp of the air foil thrust bearing, analyze the flow characteristics inside the bearing, and compare the results corresponding to the two shapes. Air has a lower viscosity than lubricating oil. Therefore, the thrust runner of the bearing must rotate at high speed to support the load. The gap between thrust runner and foil is significantly smaller than that of the oil bearing. Hence, it is crucial to analyze the complex flow characteristics inside the bearing to predict the complex flow inside the bearing and performance of the bearing. In addition, flow characteristics may appear differently depending on the ramp shape of the bearing foil, which may affect bearing performance. In this study, we numerically analyze the main flow path of air flowing into the bearing and the secondary flow path used for cooling the bearing using the commercial CFD software ANSYS CFX and compare the flow characteristics for straight and curved foil ramp shapes. Notably, there is a difference in the speed of the flowing air according to the shape of the ramp, which affects the bearing performance.

Development of a Submerged Propeller Turbine for Micro Hydro Power

  • Kim, Byung-Kon
    • 한국유체기계학회 논문집
    • /
    • 제18권6호
    • /
    • pp.45-56
    • /
    • 2015
  • This paper aims to develop a submerged propeller turbine for micro hydropower plant which allows to sustain high values of efficiency in a broad range of hydrological conditions (H=2~6 m, $Q=0.15{\sim}0.39m^3/s$). The two aspects to be considered in this development are mechanical simplicity and high-efficiency operation. Unlike conventional turbines that have spiral casing and gear box, this is directing driving and no spiral casing. A 10 kW class turbine which has the most high potential of the power generation has been developed. The most important element in the design of turbine is the runner blade. The initial blade is designed using inverse design method and then the runner geometry is modified by classical hydraulic method. The design process is carried out in two steps. First, the blade shape is fix and then other components of submerged propeller turbine are designed. Computational fluid dynamics analyses based on the Navier-Stokes equations have been used to obtain overall performance data for the blade and the full turbine, respectively. The results generated by performance parameters(head, guide vane opening angle and rotational speed) variations are theoretically analysed. The evaluation criteria for the blade and the turbine performances are the pressure distribution and flow's behavior on the runner blades and turbine. The results of simulation reveals an efficiency of 91.5% and power generation of 10.5kW at the best efficiency point at the head of 4m and a discharge of $0.3m^3/s$.

Moldflow를 이용한 인라인스케이트 프레임의 사출성형공정에 관한 연구 (A Study on the Injection Molding Process of Inline Skate Frame Using Moldflow)

  • 이형우;박철우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권2호
    • /
    • pp.289-295
    • /
    • 2010
  • 플락스틱 재료를 사용한 가공법 중에서 가장 보편적인 가공법이 사출성형이다. 플라스틱 재료의 활용도는 지속적으로 증가하고 있으며, 신소재 등의 개발로 그 적용범위 또한 확대되고 있다. 사출성형에서 수축현상은 수지의 종류, 즉 결정성 수지인지 비결정성 수지인지에 따라 크게 다르게 나타나며 사출성형시의 운전조건에 따라서도 다르다. 본 연구에서는 Al합금으로 제작되고 있는 인라인 스케이트의 프레임을 플라스틱 재료로 대체하기 위한 최적화 공정에 관한 것이다. 금형설계 전 해석을 통하여 성형공정이 최소화되는 런너와 게이트의 치수와 형상을 결정하겠다. 런너와 게이트의 치수 변화에 따른 제품의 사출성형성을 알아보겠다. 본 연구의 시뮬레이션에서는 사출성형해석용 소프트웨어인 Moldflow를 이용해서 해석을 수행하였다.

Development of 460V/225A/50㎄ Contact System in Current Limiting Molded Case Circuit Breakers

  • Park, Young-Kil;Park, Chan-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권4호
    • /
    • pp.165-172
    • /
    • 2003
  • Low voltage circuit breakers are widely used in power distribution systems to interrupt fault current rapidly and to assure the reliability of the power supply. This paper is focused on understanding the interrupting capability, more specifically of the contacts and the arc runner, based on the shape of the contact system in the current molded case circuit breaker (hereafter MCCB). Moreover, in order to improve the interrupting capability of the circuit breaker, the estimation and analysis of the interrupting capability, based on the 3-D magnetic flux analysis, were developed. Furthermore, this paper also presents results of the estimation and analysis of the interrupting capability when applied to different model breakers. In addition, this paper analyzes the efficiency of the interrupting tests by forming false current paths consisting of a three-division cascade arc runner in the contact system. With regards to the interrupting test, there is a need to assure that the optimum design required to analyze the electromagnetic forces of the contact system generated by the current and flux density be present. Based on the results of this study, this paper presents both computational analysis and test results for the newly developed MCCB 460V/225A/50㎄ contact system.

Experimental Investigations on Upper Part Load Vortex Rope Pressure Fluctuations in Francis Turbine Draft Tube

  • Nicolet, Christophe;Zobeiri, Amirreza;Maruzewski, Pierre;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.179-190
    • /
    • 2011
  • The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The influence of outlet bubble cavitation and air injection is also investigated for low cavitation number. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

노즐형상변화에 따른 횡류수차의 압력과 속도 분포 (Pressure and Velocity Distributions of Cross-flow Hydroturbine by Nozzle Shape)

  • 임재익;최영도;임우섭;김유택;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2833-2838
    • /
    • 2007
  • Recently, small hydropower attracts attention because of its clean, renewable and abundant energy resources to develop. However, suitable turbine type is not determined yet in the range of small hydropower and it is necessary to study for the effective turbine type. Moreover, relatively high manufacturing cost by the complex structure of the turbine is the highest barrier for developing the small hydropower turbine. Therefore, a cross-flow turbine is adopted because of its simple structure and high possibility of applying to small hydropower. The purpose of this study is to examine the optimum configuration of nozzle shape to further optimize the cross-flow hydraulic turbine structure and to improve the performance. The results show that pressure on the runner blade in Stage 1 and velocity at nozzle outlet have close relation to the turbine performance.

  • PDF

Design of Shock Absorber Housing Using Aluminum Vacuum Die Casting Technology

  • Jin, Chul-Kyu;Kang, Chung-Gil
    • 한국산업융합학회 논문집
    • /
    • 제21권1호
    • /
    • pp.1-8
    • /
    • 2018
  • The purpose of this study is to develop a high-strength, high-toughness, thin-walled aluminum shock absorber housing product by applying a high vacuum die casting method to improve internal gas defect and formability. The analysis program dedicated for the casting was used because it was too costly and time-consuming to adopt the gating system design. The final casting plan was designed based on the flow pattern of the material filled into the mold and the result of air pressure and air pocket after the material was completely filled in the mold. Gaty shape was designed as a split type. The runner was designed to have the same shape as the initial inlet curve of the cavity, and the flow of the molten metal was prevented from turbulent flow. The most favorable results were obtained when the injection speed was $V_2=4.0m/s$. Defects on pores were reduced by applying high vacuum level inside the mold.

박스형태 제품의 가스사출성형 (Gas-Assisted Injection Molding for Box Shape Molded Parts)

  • 조재성
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.276-283
    • /
    • 1999
  • This study focuses on part quality and cycle times under gas-assisted injection molding (GIM) of box shape molded parts. The position of the gas channel was established near to parting line at the end of last locations to fill. Applied hot runner and valve gates, the gas was introduced directly into the mold cavity via gas pin. As GIM was applied, the conclusion reached as follows. I) The quality of appearance was improved by reducing sink marks and scratches of texture. ii) The reliability was improved by preventing warpages and reinforcing rigidity through optimum gas channel layout. iii) It is enable to use small size of injection molding machine step by step as GIM was accomplished low pressure and reduced clamp forces against CIM. iv) The productivity were improved by reducing cycle times.

  • PDF

플라스틱 DVD-Tray의 박막 사출성형을 위한 최적화 설계 Simulation에 관한 연구 (Study on the design optimization of injection-molded DVD-Tray parts using CAE Simulation)

  • 정재엽;김동학
    • 한국산학기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.1726-1732
    • /
    • 2008
  • 사출성형은 다양한 형태의 제품을 대량 생산할 수 있는 플라스틱 성형 공법중의 하나이다. 플라스틱 제품을 만들기 위해서는 고상의 재료를 액상으로 녹인 후 다시 고상으로 굳히는 과정을 거치는 데, 이 과정 중에 많은 문제점들이 발생을 하게 된다. 과거에는 이러한 문제를 해결하기 위해서 성형 후 금형 설계 변경 등의 시행착오적 방법을 사용하였으나, 성형과정에 대한 사출성형 CAE(Computer Aided Engineering)를 적용함으로써, 사전에 문제점을 파악하는 기술이 도입되었다. 플라스틱 제품의 큰 문제점 중 하나가 치수안정성이다. 특히 박막사출성형품은 게이트의 위치, 냉각채널과 온도에 따라서 변형량이 크게 달라진다. 본 연구에서는 현재 Stackmold방식으로 4개의 Cavity에 4개의 Hot-Runner가 설치된 금형을 통해 생산중인 DVD Tray 박막사출제품의 생산 원가 절감을 위해서 Cavity하나에 한 개의 Hot-Runner를 설계하기 위해서 CAE 해석을 통해 게이트의 위치, 냉각채널과 온도에 따라 비교하여 해석해 최적의 제품 설계를 하였다. CAE 해석에는 상업화된 CAE 프로그램인 Moldflow를 사용하였고, 수지는 PC+ABS를 사용하였다.

Effect of Guide Nozzle Shape on the Performance Improvement of a Very Low Head Cross Flow Turbine

  • Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제17권5호
    • /
    • pp.19-26
    • /
    • 2014
  • The cross flow turbine attracts more and more attention for its relatively wide operating range and simple structure. In this study, a novel type of micro cross flow turbine is developed for application to a step in an irrigational channel. The head of the turbine is only H=4.3m and the turbine inlet channel is open ducted type, which has barely been studied. The efficiency of the turbine with inlet open duct channel is relatively low. Therefore, a guide nozzle on the turbine inlet is attached to improve the performance of the turbine. The guide nozzle shapes are investigated to find the best shape for the turbine. The guide nozzle plays an important role on directing flow at the runner entry, and it also decreases the negative torque loss by reducing the pressure difference in Region 1. There is 12.5% of efficiency improvement by attaching a well shaped guide nozzle on the turbine inlet.