• Title/Summary/Keyword: Runner shape

Search Result 54, Processing Time 0.03 seconds

Shoemoulds Runner Shape Optimization using MoldFlow (MoldFlow를 이용한 신발 사출금형 러너부 형상 최적화)

  • 류미라;서영백;문병주;박흥식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1483-1486
    • /
    • 2003
  • Injection mold is a manufacturing process used to produce the various parts of complicated shape at a low cost. Many factors such as, section shape, resin and mold temperature, filling time, etc, affect on the quality of injection part during injection molding process. The precent study, was carried out the shrinkage analysis of shoes injection mold to optimize runner shape based on filling and packing pressure with MoldFlow. Taguchi design and analysis of variance are used to optimize injection mold design.

  • PDF

A study on the runner system for filling balance in multi-cavity injection molds (다수 캐비티 사출금형에서의 균형 충전을 위한 러너 시스템 연구)

  • Jeon, Kang-Il;Noh, Seung-Kyu;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1581-1588
    • /
    • 2011
  • In this study, flow characteristics in a multi-cavity injection molding process were investigated. One of main problems occurred in the multi-cavity molding is a flow imbalance among cavities since it affects physical properties and quality of products. Charge imbalance is caused by the uneven shear stress. Therefore, changes in viscosity affect the physical properties of resin and injection conditions differ in the filling imbalance phenomenon. Through, this study focus on experimental studies of flow imbalance for PC and PP resin occurring in a balanced delivery system. Experimental results were compared with CAE results. By experimental and CAE analysis, main cause for the flow imbalance is temperature distribution in cross section of runner. New runner system with a simple change of runner shape was suggested to avoid the flow imbalance. A series of simulation to confirm feasibility of Volume Runner's effects was conducted using injection molding CAE.

Performance Characteristics of an Axial Propeller Small-hydro Turbine with Various Cambers of Runner Blade (캠버각 변화에 따른 소수력 축류 프로펠러 수차의 유동 특성 연구)

  • Byeon, Sun-Seok;Kim, Tae-Youn;Han, Sang-Meok;Kim, Jeong-Hwan;Kim, Youn-Jea
    • New & Renewable Energy
    • /
    • v.8 no.2
    • /
    • pp.44-51
    • /
    • 2012
  • The aim of this paper is to examine the hydraulically optimized camber of a blade. Prior studies have tried to determine the sound method of design on small-hydro turbines. These have appeared to realize a reasonably efficient small-hydro turbine. Nonetheless, specific and accurate design data have not as yet been established for the shape of the runner blade. Hence, this study examines the performance characteristic of an axial propeller turbine with 0~8% camber variations. The results of output power, efficiency, and pressure distribution of the turbine are graphically depicted. The definition of camber refers to the NACA airfoil. The commercial finite element analysis (FEA) packages, ANSYS, and CFX are used in this study. The results revealed the performance characteristics on small-hydro turbine and suggested a highly efficient section shape of the runner.

A Study on the Nozzle Shapes of a Cross-Flow Type Hydro Turbine for Wave Power Generation (파력발전용 횡류형 수력터빈의 노즐형상에 관한 연구)

  • Choi, Young-Do;Kim, Chang-Coo;Kim, You-Taek;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.30-35
    • /
    • 2008
  • The purpose of this study is to examine the effect of nozzle shapes on the performance and internal flow characteristics of a cross-flow type hydro turbine for wave power generation. The performance of the turbine is calculated with the variation of rotational speed for 4 types of the nozzle shape using a commercial CFD code. The results show that nozzle shape should be designed considering available head of the turbine. Best efficiencies of the turbine by 4 types of the nozzle shape do not change largely but overall performances varies mainly by the nozzle width. The output power of the cross-flow type hydro turbine changes considerably by the nozzle shape and a partial region of stage 2 in the runner blade passage produces maximum regional output power in comparison with the other runner blade passage areas.

A Development of Casting Design Automation Framework (주조방안 자동설계 프레임워크 구축)

  • Cho, Won-Chul;Kim, Sung-Min;Nyamsuren, Purevdorj;Sohn, Jung-Woo;Lee, Soo-Hong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.2
    • /
    • pp.91-96
    • /
    • 2012
  • Use of casting simulation software, analyzing the reason for defect became easy. However, to create a practical solution, experienced casting expert's knowledge is always indispensable. In this study, we develop casting design automation system and the algorithm based on casting expert's knowledge, so that faster and more accurate design is enabled. Especially, to generate runner which can be shaped in numerous ways, we suggest the 'nexus' method to shape runner system.

Application of Birefringence CAE in Mould Design of Optic Lens Injection Molding Process (광학렌즈 사출성형금형 설계에 있어서 CAE기술의 활용)

  • Yamanoi, Mikio;Kwak, Tae-Soo;Jung, Jong-Kyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2012
  • This study is focused on simulation technology in injection molding process for plastic optic lenses. The CAE program, $3D-TIMON^{TM}$ is used for the injection molding simulation with O-PET resin material. The design for different gate shape and runner layout has been under review by CAE simulation results. Moreover, the prediction of birefringence and polarized light in injection molded optic lenses has been tested by the CAE Program. The simulation results have been expected to effectively use in the design of injection molding mould.

Improvement of Short Circuit Performance in 460[V]/400{A]/85(kA] Molded Case Circuit Breakers (460[V]/400[A]/85[kA] 배선용 차단기의 아크런너 변형을 통한 차단성능 향상)

  • Lee, Seung-Su;Her, June;Yoon, Jae-Hun;Kang, Seong-Hwa;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.394-394
    • /
    • 2009
  • Owing to the increasing number of intelligent homes(or called Smart home), the corresponding cost is much higher. Low voltage circuit breakers are widely used in the intelligent homes to interrupt fault current rapidly and to assure the reliability of the power supply. The distribution of magnetic field induced by arc current in the contact system of molded case circuit breaker(hereafter MCCB) depends on the shape, arrangement, and kinds of material of arc runner. This paper is focused on understanding the interrupting capability, more specifically of the arc runner, based on the shape of the contact system in the current MCCB. The magnetic driving force was calculated by using the flux densities induced by the arc current, which are obtained by three-dimensional finite element method. There is a need to assure that the optimum design required to analyze the electromagnetic forces of the contact system generated by current and the flux density be present. This is paper present our computational analysis on contact system in MCCB.

  • PDF

A Gating System Design to Reduce the Gas Porosity for Die Casting Mobile Device (다이캐스팅 모바일 기기의 기공결함 감소를 위한 유동구조 설계)

  • Jang, Jeong Hui;Kim, Jun Hyung;Han, Chul Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.86-92
    • /
    • 2021
  • Usually, the die-cast components used in small mobile devices require finishing processes, such as computer numerically controlled coating. In such cases, porosity is the most important defect. The shape of the molten aluminum that passes through the runner and gate in a mold is the one of the factors that influences gas porosity. To define the spurt index, which numerically indicates the shape of molten aluminum after the gate, Reynolds number and Ohnesorge number are used. Before die fabrication, computer-aided engineering analysis is performed to optimize the filling pattern. Finally, X-ray and surface inspection are performed after casting and machining to evaluate how the spurt index affects porosity and other product parameters. Based on the results obtained herein, a new gating system design process is suggested.

CFD Performance analysis of Micro Tubular-type hydro turbine by blade shape (블레이드 형상 변화에 따른 마이크로 튜블러 수차의 CFD 성능해석)

  • Park, Ji-Hoon;Hwang, Young-Cheol;Mo, Jang-Oh;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.206.1-206.1
    • /
    • 2011
  • Recently, various developments in the area of small hydropower have being made and small hydro turbines are suitable for domestic use because it is a clean and renewable energy source. A small hydropower generator produces power by using the different water pressure levels in pipe lines and energy which was initially wasted by use of a reducing valve at the end of the pipeline is instead collected by a tubular-type hydro turbine in the generator. In this study, in order to acquire the performance of tubular-type hydro turbine applied, the output power, head, efficiency characteristics due to the different guide vane and runner vane angle are examined in detail. Moreover, influences of pressure and velocity distributions with the variation of guide vane and runner vane angle on turbine performance are investigated by using a commercial CFD code.

  • PDF