• Title/Summary/Keyword: Runge-Kutta 법

Search Result 113, Processing Time 0.023 seconds

Development of a Three-Dimensional Euler Solver for Analysis of Basic Contraction Flow (수축부 기초 유동 해석을 위한 삼차원 Euler 방정식 풀개 개발)

  • Kim J.;Kim H. T.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.8-12
    • /
    • 1997
  • The three-dimensional Euler equations are solved numerically for the analysis of contraction flows in wind or water tunnels. A second-order finite difference method is used for the spatial discretization on the nonstaggered grid system and the 4-stage Runge-Kutta scheme for the numerical integration in time. In order to speed up the convergence, the local time stepping and the implicit residual-averaging schemes are introduced. The pressure field is obtained by solving the pressure-Poisson equation with the Neumann boundary condition. For the evaluation of the present Euler solver, numerical computations are carried out for three contraction geometries, one of which was adopted in the Large Cavitation Channel for the U.S. Navy. The comparison of the computational results with the available experimental data shows good agreement.

  • PDF

Human Body Vibration Analysis under Consideration of Seat Dynamic Characteristics (시트 동특성을 고려한 인체 진동 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5689-5695
    • /
    • 2012
  • In this study, vibration properties of seat and human body are analyzed through test and numerical analysis methods by taking into account the viscoelastic characteristics of polyurethane foam as seat material which is applied for vehicle. These viscoelastic characteristics which show nonlinear and quasi-static behavior are obtained by compression test. In addition, the viscous elastic property of polyurethane foam is modelled mathematically by using convolution integral and nonlinear stiffness model. In order to analyze the performance on ride comfort of seat, vertical vibration model is established by using dynamic model of seat and vertical vibration model of human body at ISO5982, and so the related motion equations are derived. A numerical analysis simulation is applied by using the nonlinear motion equation with Runge-Kutta integral method. The dynamic responses of seat and human body on the input of vibration acceleration measured at the floor of the railway vehicle are examined. The variation of the index value at ride comfort on seat design parameters is analyzed and the methodology on seat design is suggested.

Natural Frequency Characteristics of Vertically Loaded Barrettes (수직하중을 받는 Barrette 말뚝의 고유진동수 특성)

  • Lee, Joon Kyu;Ko, Jun Young;Choi, Yong Hyuk;Park, Ku Byoung;Kim, Jae Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.39-48
    • /
    • 2021
  • In this paper, an analytical model is proposed for assessing the natural frequency of barrettes subjected to vertical loading. The differential equation governing the free vibration of rectangular friction piles embedded in inhomogeneous soil is derived. The governing equation is numerically integrated by Runge-Kutta technique and the eigenvalue of natural frequency is computed by Regula-Falsi method. The numerical solutions for the natural frequency of barrettes compare well with those obtained from finite element analysis. Illustrated examples show that the natural frequencies increase with an increase of the cross-sectional aspect ratio, the friction resistance ratio and the soil stiffness ratio, and decrease with an increase of the friction aspect ratio, the slenderness ratio and the load factor, respectively.

Development of efficient method to reduce the computation time for transient stability time simulation program (과도안정도 시모의해석법의 계산속도 개선 및 프로그램 개발에 관한 연구)

  • Moon, Young-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.88-91
    • /
    • 2001
  • 본 연구에서는 전력계동의 다이나믹스를 정확하게 표현할 수 있는 기계적 시스템인 등가역학 모델(Equivalent Mechanical Model: EMM)을 제안하고, 이를 기초로 확고한 수학적 해석을 통해 에너지 함수의 유도 방법을 체계화 하고 물리적 의미를 파악함으로써 에너지 함수를 이용한 시스템 해석에 대한 이론적 배경을 마련한다. 또한 시영역 모의법을 이용한 과도안정도 해석의 간접법에서 SI법중 Trapezoidal법에서의 오차를 줄일수 있는 알고리즘을 제시한다. 먼저 수학적 이론을 바탕으로 전력계통에 적용하여 상태변수를 업데이트 시킴으로써 Trapezoidal법에서보다 더 정확한 데이터를 얻고자 한다. 본 연구에서는 명확한 수학적 이론의 적용을 위해 1기 무한대 모선을 모델로 시뮬레이션 하였으며 결과의 비교분석을 위해 Runge-Kutta법에 의한 시영역 모의와 비교하였다.

  • PDF

Application of DGFEM to 1D Boussinesq Equation (일차원 Boussinesq 방정식에 대한 불연속 갤러킨 기법의 적용)

  • Lee, Haegyun;Lee, Namjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.470-474
    • /
    • 2016
  • Madsen et al. (2002)이 제안한 일차원 고차 Boussinesq 방정식에 대하여 불연속갤러킨 유한요소법(Discontinuous Galerkin Finite Element Method)을 적용하였다. 연속적인 Boussinesq 방정식에서 각 요소경계에 불연속을 허용할 수 있도록 공간차분하고, 시간방향으로 4차 Runge-Kutta 시간적분법, 각 요소사이에는 Lax-Friedrichs 수치흐름률을 사용하였다. 계산영역의 양쪽에 불필요한 파랑의 반사를 억제하도록 흡수층을 설치하였으며, 영역 내부에서 조파할 수 있도록 하였다. Luth et al.(1994)의 수중잠제 실험에 적용하여 관측값과 잘 일치함을 확인하였다.

  • PDF

Explicit Transient Simulation of SH-waves Using a Spectral Element Method (스펙트럴 요소법을 이용한 SH파 전파의 외연적 시간이력해석)

  • Youn, Seungwook;Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.87-95
    • /
    • 2018
  • This paper introduces a new explicit spectral element method for the simulation of SH-waves in semi-infinite domains. To simulate the wave motion in unbounded domains, it is necessary to reduce the infinite extent to a finite computational domain of interest. To prevent the wave reflection from the trunctated boundaries, perfectly matched layer(PML) wave-absorbing boundary is introduced. The forward problem for simulating SH-waves in PML-truncated domains can be formulated as second-order PDEs. The second-order semi-discrete form of the governing PDEs is constructed by using a mixed spectral elements with Legendre-gauss-Lobatto quadrature method, which results in a diagonalized mass matrix. Then the second-order semi-discrete form is transformed to a first-order, whose solutions are calculated by the fourth-order Runge-Kutta method. Numerical examples showed that solutions of SH-wave in the two-dimensional analysis domain resulted in stable and accurate, and reflections from truncated boundaries could be reduced by using PML boundaries. Elastic wave propagation analysis using explicit time integration method may be apt for solving larger domain problems such as three-dimensional elastic wave problem more efficiently.

A Study on the Thermal Boundary Layer Flow of a Micropolar Fluid in the Vicinity of a Wedge (미세극성 유체 유동장에 놓여진 쐐기형 물체주위의 열경계층에 관한 연구)

  • 김윤제
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.122-127
    • /
    • 1999
  • The characteristics of thermal boundary layer flow of a micropolar fluid in the vicinity of a wedge has been studied with constant surface temperature. The similarity variables found by Falkner and Skan are employed to reduce the streamwise-dependence in the coupled nonlinear boundary layer equations. Numerical solutions are presented for the heat transfer characteristics with Pr=1 using the fourth-order Runge-Kutta method and their dependence on the material parameters is discussed. The distributions of dimensionless temperature and Nusselt number across the boundary layer are compared with the corresponding flow problems for a Newtonian fluid over wedges. Numerical results show that for a constant wedge angle with a given Prandtl number, Pr=1, the effect of increasing values of K results in an increasing thermal boundary thickness for a micropolar fluid, as compared with a Newtonian fluid. For the case of the constant material parameter K, however, the heat transfer rate for a micropolar fluid is lower than that of a Newtonian fluid.

  • PDF

Non-linear Shimmy Analysis of a Nose Landing Gear with Free-play (유격을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Hwang, Jae-Up;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.973-978
    • /
    • 2010
  • In this paper, we studied the shimmy phenomena of an aircraft nose landing gear considering free-play. Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. This phenomena is caused by a couple of conditions such as low torsional stiffness of the strut, friction and free-play in the gear, wheel imbalance, or worn parts, and it may make an aircraft unstable. Free-play non-linearity is linearized by the described function for a stability analysis in a frequency domain, and time marching is performed using the fourth-order Runge-Kutta method. We performed the numerical simulation of the nose landing gear shimmy and investigated its linear and nonlinear characteristics. From the numerical results, we found limit-cycle-oscillations at the speed under linear shimmy speed for the case considering free-play and it can be concluded that the shimmy stability can be decreased by free-play.

Performance Analysis of Heat Sink for LED Downlight Using Lumped Parameter Model (집중변수모델을 이용한 LED조명등 방열기구의 성능분석)

  • Kim, Euikwang;Jo, Youngchul;Yi, Seungshin;An, Younghoon
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.64-72
    • /
    • 2017
  • The performance analysis of the 70 W class LED lighting system suitable for the Middle East environment was performed using the lumped parameter model. The LED light is composed of a heating substrate, a heat pipe, and a heat sink. We divided the LED lights into four objects and applied energy equilibrium to each of them to establish four lumped nonlinear differential equations. The solution of the simultaneous equations was obtained by the Runge-Kutta method. Convective heat transfer coefficients of the lumped model were obtained by multidimensional CFD analysis. As a result of comparison with experiment, it was found that the heating substrate had an error of $1.5^{\circ}C$ and the upper heat sink had an error of $1.8^{\circ}C$ and the relative error was about 0.6 %. Using this model, temperature distribution analysis was performed for normal operating conditions with an ambient temperature of $55^{\circ}C$, with sunlight only, with abnormal operating conditions with sunlight, and without an upper heat sink.

Free Vibrations and Buckling Loads of Beam-Columns on Winkler-Type Foundations (Winkler형 지반위에 놓인 보-기둥의 자유진동 및 좌굴하중 해석)

  • Jeong, Jin Seob;Lee, Byoung Koo;Oh, Sang Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.251-258
    • /
    • 1993
  • The main purpose of this paper is to present both the natural frequencies and the buckling loads of beam-columns on Winkler-type foundations. The ordinary differential equations governing the free vibrations and the buckling loads of beam-columns on Winkler-type foundation are derived as nondimensional forms. The Runge-Kutta method and Determinant Search method are used to perform the integration of the differential equations and to determine the eigenvalues(natural frequencies and buckling loads), respectively. Hinged-hinged and damped-clamped end constraints are applied in numerical examples. The relation between frequency parameter and elastic foundation parameter is presented in figure. The effects of axial loads on the natural frequencies of beam-columns on elastic foundations are investigated and the relation between buckling load parameter and elastic foundation parameter is also analyzed. The relation between foundation rested ratio and frequency parameter, buckling load parameter are investigated. The beam-columns on non-homogeneous elastic foundation are analyzed and typical mode shapes are also presented.

  • PDF